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CHAPTER I

INTRODUCTION & SUMMARY

MAC is a relatively new digital control design technique that can be
implemented using dedicated microcomputers or microprocessors. In its

simplest form, MAC consists of:

(i) an internal model of the system to be controlled

(ii) a reference trajectory description of the desired closed

loop behavior

(iii) an on-line optimization of future control inputs to produce

the desired performances.

This technique has been proven successful in many industries and aerospace

applications. Although the methodoLogy was originally developed by prac-

ti•cing engineers from heuristic arguments, single-input single-output MAC

under some reasonable Assumptions has been extensively analyzed in the pre-

vious report AFWAL-TR-80-3125. As a result of basic research questions

arising in this previous study, the present work on adaptive MAC was undertaken.

The ma.n objective of this project is to develop an daptive MAC and an

appropriate frame•ork for robustness analysis particularly when the plant

to coopensated apriori by a f ixed gain 4n4Log controller. Based on the

objective of this project. this report is prtiarily divided into three

parts: an adaptive estization scheme for systen id.entiticatioiR of the

unknovn plant dynamics is developed and -inryzed in Part I- classic-al and

modern robustness analysls techniques are applied to MAC in Part 2: and Part

3 contains the results oo sio.ulati.on.

The mthods of Parts I and Z are deconstrated on veveral examples by

computer si-mulation In Part 1. DetAled derivations and proofs o, a nduber

of the results are cont4iied In the Appendices in the form of published

research papers or papers benj submitted (or publication.

iI-



In Chapter 2, the system identification procedure for adaptation

to system changes is presented. The method used for identification is the

canonical variate analysis (CVA) technique. This method has been developed

in the last several years and overcomes the difficult problems in currently

available methods which prevent their use in general real-time automated

systems. Some of the difficulties of other methods are first discussed,

and the attractive features of CVA are described including the statistical

and computational robustness of the method as well as the inherent

ability to deteLrine the appropriate model state order from the obser-

vational data. The basic conceptual aspects of CVA are thee developed ;

which in:lude the choice of a best set of reduced states of the past bL

for prediction of the future evolution of the process. This is

accomplished by a canonical variate analysis of the past and future.

The details of such an analysis are given in two of the appendiceA.

The computational aspects of the procedure involve a singular value

decomposition which is a very accurate and numerically stable

algorithm. The close relationship between the CVA method and the

maximum likelihood and instrumental variable methods are described.

to investigate the effect of external input excitationts on the

accuracy of the identified system model, simultaneous confidence bands

on the identified plant transfer function and disturbance noise power

spectrum are computed. The detal13 of this computation arR contained

in an appendix. tising these results the output tracking error due to

both control and identification errors 14 derived in the context of

stochastic And dual control. The computati nal aspects of the

41Orit~ho44 re described including the basic steps and Amount of coo-

putatton with the detailod coaputation4l equation* contained In the

appendices.

Chapter 3 avalyzes RAC vwhen applied to a lightly daorpe4 plant

that has been compensatd apriori by constant gain output feedback. .IAC

software uses an itpulle response dscription of the plant which has A

large number of tarts and 1s not suitable for analytical studies.

Therefore in thLs chapter ,MAC has been described using 4 rational transfer

!unction mode! (difference equation =del) of the plant which sho" that

|-.:



one-step-ahead KAC can also be explained using the classical root locus Al

technique. In chapter 4 an appropriate framework is developed for robust- 0

ness analysis applying the perturbational argument to the Nyquist plot of

"the steady state RAC loop transfer function. It has been possible to apply

the current robustness analysis technique to MAC under this framework. The

analysis gives a set of sufficient conditions, and the perturbed closed- '

loop system remains stable if the additive or multiplicative modelling

error of the plant satisfies these conditions. These conditions define the

neighborhood of the identified model such chat if the actual plant lies in

this neighborhood then the MAC control law designed on the basis of the

identitied model also stabilizes trhe actual plant. Finally, in Chapter 5,

new techniques are developed for slecting optimum (possibly unique)

sampling rates, which play a crucial role in an adaptive control scheme.

The sampling time interval is selected on the basis of a minimax approach

and also satisfies the classical Nyquist sampling rate.

Finally, in Chapter 6. extensive simulation results have been presented

and in Chapter 7 conclusions and summary are provided.
Iii4

The major conclusion of this report is that .AC is a very effective 4ad

superior control technique for line~.r uault ivariable plants in a deter-

ministic envtro:=etnt As vell as in an incertain environmenit where the planE

is not exactly known. The Adaptive M-C has 41so been found to be souccesg-

ful where the plant i! slowly time, varying And/or non-linoAr. The rabult-

neý,g properties of standard MAC and 4dAptive MUAC h4ve bee- verified b--

oxt~naivt! iimu'.4tions of the missild .attitudc control problem. A campitte

codol o1 %LC for 4 czulti-step-ahead optLi*rXAtion hortzon And i ltt-blocking

os nort yet avAilAble, 4nd without thi4 the theoretical propeorties of 4 rQ41

world MAC 4re not availablq in at% 4n can 4. fqore. It I recoe-nded that

futtire %tudleu of wAC concentrate on (1) oveloping a coepete •ondel of the

MAC alorLithc. ML) cocparlsnn of MAC pwr~ormancq% it o.ther contrgo dq~ign

techmiqueg. and (iii) applying an Adaptiveq MAC to ;a 1%ll srato ftigbt

control probit-z.

fif
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Part 2

CHAPTER 2: SYSTEM IDENTIFICATION

2.1 Introduction

There has been considerable progress in sysrem identification in recent

years. The method ,-f maximum likelihood has been established as the most
accurate in theory, although the computational burden and numerical con-

ditiontng are serious problems particularlY for general applications where

the number of parameters can easily be dozens of even hundreds. A number

of simplified schemes have been considered such as recurstive ML and instru-
k-c

mental variable methods. While these methods have reduced computational

requirements, there are difficulties with initialization and with accuracy

in small samples which are of particular interest in tracking dynamical

systems. Also these methods are not entirely reliable numerically since 5
they depend upon the ARMA parameterization which is known to have global

singularities (Gevers and Wertz, 1984). Also if the system order is over

estimated, then the computations become ill-conditioned. This considerably

complicates the task of determining the state order which is usually

unknown. A niumber of more ad hoe schemes are available, but these have

even 1os desirable statistical or computational properties.

Fortunately. in the last several vears. a new method has been developed

u~ng the dppr0ehe% Of canonicl Vart4te 4nalyss (CVA) method of matheca.-

tI e4 I atiti-tcs, *toch4Atic r-aliratinn concepts frot mystota thcory, 4qd

Inform4tion or entropy *thods for che t4taistica1 'hotce of mod.. order

4nd structure. Thi% =#thod has Nome highly 4o.irAbhl propert•es¢. !he

order ot the state 1% d-etortnc4 *zatstc•(•1iy. The co-tpu•ation is ha_-edo

upon 4 singular vajlue dqcmpmsitjIon VNdch 1% one of the mb[t st4ble and

accurate numerical proco.ure4 a4v~lble. The .dw1l fitting and sgate order PA

neloction 'A% always ou-meric All we1l conditioned. The maodel fitzina

4i CurAcv hag been found to be very close to aximun ltkelihond in - .de•'•te

and large %amples slzet. The canonlcal variate nA l-Isi method fnr

systen identi itatton has been used as the primary procedure In th.Lq tudy

r...



because it is the only method currently available with the above proper-

ties. Furthermore, it handles with no additional c( )lication the dif-

ficult multi-input multi-output system identification problem. In the

develooment, the CVA method is discussed in Section 2.2, and the close

relationship of CVA to the instrumental variable and maximum likelihood

methods are discussed in Sections 2,3 and 2.4 respectively. The topics of

input design and sampling for identifiability are described in Section 2.5,

while the approaches of stochastic and dual control for input design are

discussed in Section 2.6. Finally the computational aspects of the CVA

method are discussed in Section 2.7. The detailed derivations supporting

these sections are contained the various appendices.

2.2 Canonical Variate Analysis of Time Series

The canonical variate analysis method of system identification was first

proposed by Akaike (1975). In this fundamental contribution, a stochastic

realization algorithm was proposed by using the statistical method of cano-

nical correlation analysis on the Hankel covariance matrix to choose a

basis for the state space and to statistically determine the rank of the

state space. This provided, a fundamentally new and statistical approach to

the determination of a dynamical system on the basis of noisy and finite

length data. The statistical determination of state order was based upon

the Akaike information criterion (AIC). This initial work did not consider

the case of an input to the system, but considered only the case of an out-

put.

Later work (Larimote, 1983, in Appeudix B) includes the more general

c,_e of a multi-.nput mulcl-output 3ystem. The computationa. procedure of

this :aethod is more efficient in requiring only one canonical correlation

analysis, dnd can aliso be used to solve the reduced order modeling problem

using 3 general qqqdratic weighting on the prediction error of the future.

Furthermore, a more exact computation of the AIC is used for order deter-

mination than that used in the original work of Akaike.

The approach to system identification using generalized canonical

variables is described iai 3ome detail in Larimore (1983, in Appendix B).

2-2



That approach involves consideration of the past p(t) and future f(t) of a

vector process at a time t defined as

pT(t)s(yT(t),uT(t),yT(t-i ),uT(t-l),...)T (2.1)

fT(t)=(yT(t),yT(t-l),,..)T (2.2)

where u(t) is the input and y(t) is the output of an unknown system with

|itate space structure of the form

X(t+1)=OX(t)+Gu0t)+w(t) (2.3)

y(t)=Hx(t)+Au(t)+Bw(t)+v(t) (2.4)

with v(t) a measurement noise and w(t) a process noise with respective

cross spectral density matrices R and Q. From the theory of Markov

processes and in particular the theory of stochastic realization, the

minimal state vector defines the information from the past relevant to

the future of the process and is called the predictor space (Akaike, 1974a).

The approach of canonical variables to system identification is to

determine the optimal set of linear combinations e(t) of the past p(t)

that best predict the future f(t) in terms of minimizing the prediction error

~I ff I EIff)T Cov-1 (f,i) (f-f)J (2.5)

where Cov(f,f) is the covariance matrix of the fut,,ie f 4nd i Is the best

prediction of f based upon the memory m(t) . This optimization problem

involves the optimal selection of the dimension .)f m(t) as well as

the optimal selection of the linear combinations of the past.

The solution to thIs problem is derived in Lartmore (1985a). included in

appendix A, in terms of a generalized singular value d-composition (SVD).

2-3



This solution is precisely a generalization of the classical canonical

correlation analysis problem of mathematical statistics (Hotelling, 1936).

Modern computational procedures use a singular value decompositions (Golub,

*! 1969) involving the covariance matricies of the past and future. The

generalized SVD determines transformations J and L and a diagonal matrix D

such that

3 JCov(p,f)L = Diag(y 1 >... >YI> 0,...,O)-D (2.6)

JCov(p,p)J = I; LCov(f,f)L - I (2.7)

The transformations can be interpreted as defining a new set of coor-

dinates for the past and future in which the covariance are D, I and I as

given in the last equation. If in (2.5) and (2.7), the covariance matrix

Cov(f,f) is replaced by an arbitrary positive semidefinite weighting matrix

A, then the above generalized SVD still gives the solution to minimizing

the weighted prediction error (2.5) even though the covariance rela-

tionships no longer hold (Larimore, 1985a).

For a full order state model, the optimal memory or state x(t) is

related to the past p(t) in terms of the first k canonical variables as

m(t) - (Isub k, O)Jp(t), i.e. the first k components of the canonical pre-

S4dctor variables Jp(t). A adnimal ocder realization is obtained with this

choice of state. The computatioe of the state space matricies Is given in

Larimore (1583) in Appendix B. The state space matricies and noise

covartance matricles are given by a linear regression as specified by the

state space cquations (2.3) and (2.4).

In system identification, the covariance matrics are not known but are

estimated from the observations. The statistical de'ermination of rank in

the canonical variate analysis is given approximatley using etandard cano-

nical correlation analysis methods (Akaike, 1976). A more refined com-

pareson between the different order models is given by use of the Ak3ike

information criterion (AIC) which is asymptotically optimal in minimizing

entropy (Shibata, 1981). The use of entropy measures such as the AIC has a

fundamental justification in terms of the basic sta.istical principles of

sufficiency and repeated gampling (Larmore. 1983a).
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Th.- minimal order realization s unique independent of the weighting

matrix A, but when a reduced memory is selected, the approximate system

does not in general minimize the prediction error for that order. This is

'Setciu, the reduced rank canonical. variables are not in general recursively

S,'coinrutablau. However in the case of the statistical rank determination
problem, there is an insigificant difference between the state of the
realized system corresponding to the statistically optimum choice of order

and the full rank canonical variables.

-..3 ..ei.ticshlip with the Method of Instrumental Voriables

The instrumental variables method gas a natural interpretation in terms

of the generalized canoaical variate problem. In the instrumental

vatial'As &ppzoacl the state equations (2.3) are considered as unobserved

strticturaý relationships that are indirectly observed through the noisy

measurement equations (2.4). A vector m(t) of instrumental variables is

constructed which is hopefully cl •se to the true state x(t). This is used

in place of the truc state in solving the problem. This apparently works

well for an appropriate choice of the instrumental variables when the true

order of the system is known or ;Yell chosen. In other cases, this approach

may lead to inaccurate models.

A more general problem is the optimal chr' ce of instrumental variables

for a specified order k of the model as posed Ly Rao(1973, 1979) (see also

Larimore, 1985a, in Appernd5_× A). This Is fcrmulated as findirp the optimal

choice of k linear combinations of Lhe past )(t) that p,'edict thr future

f(t) as measure in terms of the squared er -- (f-f)T (f-f). This is preci-

sely the gencra)ixed canonica] vaciate proble- wiLh weighting matrix A I.

If k is chosen as full rank, then the memory and the state space realiza-

tion are independent of the weighting. However, for lower rank k, there

cAn be a cons.deratle d~fference between the state .pace and reduced order

system (Larimore, 1983). The squared error of instrumental variabes

relates to energy while the canonical correlation analyst-, relates to the

statistical significance of the problem. Thus thr canonical correlation

analysis can be viewed as an optimal chof'L of the instrumental variables

06



"using the appropriate weighting of the prediction errors for the deter-

mination of the statistically significant number of states.

Time recursive methods using instrumental variables and approximate

maximum likelihood (IV-AML) are claimed to be an approximately efficient

paramnter identification method for large samples as shown in simulation

examples (Young and Jakeman, 1979). This is shown by Monte Carlo simula-

tion and by estimating the parameter estimation error covariance matrix.

Below it is shown by Monte Carlo simulation that the canonical correlation

method also gives efficient identification of the system dynamics. This is

done by evaluating the spectral estimation error.

2.4 Maximum Likelihood Efficiency of CVA

The canonical variate system identification procedure has been found in

moderate sample sized to be close to the lower bound of maximum likelihood

estimation. There is no proof available for this, however simulations

have shown this to be the case. There is some theory to suggest why cano-

nical variate analysis is an efficient estimation procedure.

Conditional upon the choice of the state vector by the canonical

variate analysis, the computation of the state space matricies by

regression is a maximum likelihood procedure. The difficulty in proving

the asymptotic efficiency of CVA is that for correlated time series there

is no proof that CVA gives the choice of state that will result in maximum

likelihood estimates unconditionally.

The lower bound for estimating the power spectrxm and transfer function

Sis given in Larimore (1985a, in Appendix A) as a function of frequency.

From extensive simulations, the canonical variate analysis gives an iden-

tified system within the lower bound error of the maximum likelihood proce-

dure at each frequency as shown in Larimore, Mahmood, and Mehra (1984, in

Appendix D).

2.5 Input Design and Sampling

The accuracy of the identified plant model and subsequent control tracking

error depends upon the sampling rate. sample size, the presence of implicit
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or explicit extra input signals, and the presence of disturbance or output

measurement noise. In fact the presence of a linear feedback control pro-

vides no information for identification of the plant (Ljung, Gustafson, and

Soderstrom, 1974), and some additional input signal is required for plant

identifiability. Recently, Anderson(1985) has shown that available adap-
, . tive control methods that do not have persistent excitation of the system

necessarily exhibit burst phenomena of short periods with large tracking

errors when the system parameters drift far from the true.

The requirement for additional information is easily seen since the

presence of a linear feedback could be present in the plant internally and

the actual input could be unconnected to the system and still give exactly

the same response. On the presumption of a strictly linear plant, a nonli-

near feedback can be used to provide identifiability. Also a switching

between different linear feedback systems can provide identifiability. A

better approach, however is to use an explicit additional input excitation.

Such an excitation is best chosen to be a broad band noise type of spectrum

which guarantees that it is persistently exciting.

In some applications, there are implicit excitations such as wind gust

turbulence on an aircraft which provide some information about the plant.

If the power spectrum of the turbulence is exactly known along with the

input coupling to the plant state, then this can provide amplitude information

about the transfer function from the gust input to the output. In particular,

the relationship between the observed outpue spectrum Sy(z) and the

assumed input nk ise spectrum Sn(z) and transfer function H(z) is

S1 !!sy(z)- z)Sn(z)11*(Z) (2.8)

Unfortunately, in most caseas this is not very helpful since the gust

spectrum is not accurately known and is highly variable with time. Also

Sthe gust input coupling co the state will generally be different than the

control input. Furthermore, this provideu only amplitude information, 4ad

for control the transfer function phase can he crucial. Al
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The best input excitation is one that is incorrelated with the system

state. The spectrum of the input excitation can be chosen on the basis of

the plant transfer function, and the disturbance and output measurement

noise spectra. The resulting plant identification error expected at each

frequency is a complicated function of the above power spectrum and

transfer functions as well as the parameterization of the model. A

detailed derivation and description of the transfer function and noise

spectrum estimation error variance at each frequency is given in Larimore

(1985b, in Appendix E). These expressions are complicated but can be used

to calculate the estimation error and produce simultaneous confidence

bounds on the estimated transfer and spectral functions.

An additional consideration in identification accuracy is the sample

rate and rate of reidentification of the system or equivalently the sample

size. The issue of sample rate for representing a continuous time system

is covered in Section 5. The primary consideration in choosing the sample

rate is to insure that the important frequency information is preserved and

that the higher frequencies of no interest do not degrade the estimation by

aliasing. For large sample, the sample size has a simple relationship to

the accuracy of the identified system which incteases proportional to the

inverse square root of the sample siz'e. For moderate sample sizes of

several hundred which is of primary interest, this relationship can be

expected to hold approximately.

As an example of the accuracy bounds that are obtainable from the

* methods in Larimore (1985b, in Appendix E), consider the case identifying

the transfer functioa of an ARMA(4,3) model discussed in Larimore et al

(1984, in Appendix D) with a sample of 800 which is observed in closed loop

with a white noise input excitation and a white output measurement noise

with the signal to noise power ratio of the input to output equal to 0.10.

Then the transfer function of the true, identified, and simultaneous con-

fidence bands about the estimated are shown in figure 2.1. The confidence

*! • bandL .,,ntain the true transfer function entirely within the bands across

tht r.t-Lre frequency range with probability 0.95. Note that the confidence

bands are quite tight in both phase and amplitude. For a lower sample

size, the confidence bands are wider by a factor of the square root of the

sample size.
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2.6 Stochastic and Dual Control

In stochastic and dual control, the effect of the stochastic input on

both plant identification and control tracking error is taken into account.

This is also possible in the adaptive MAC framework. In this section, we

derive the tracking error as a function of the stochastic input excitation,

plant disturbance and measurement noise, and the MAC controller plant

mismodelling error. ,

The closed-loop transfer function from the plant input u(z) and the +O,

composite plant disturbance and measurement noise n(z) as seen at the

plant output to the observed output y(z) is given in Section 4.2 and can

be expressed as

y(z)= (z-l)H(z)u(z)+(z-l)n(z) ((z- I-a)+R(z (2.9)

- rwhere the relative error R(z) in estimating the plant transfer function is

defined as

"R(z) - H 1 (z)(H(z)-H(z)] (2.10)

pa

H tere H(z) is the true and H(z) is the identified plant open loop transfereI
function. Now for a complex differentiable function w - f(x) of a

complex random variahle x with mean u , the variance of the 'unction is
derived from

f ((a) f-(i) + f' (U) (x - u) (2.11)

wdt
* which holds to first order so
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Ff (x) -f(u4 2 E ~ (f (x) f P~) f (x) f- )1

(f' (p)j 2 E( x-uf2 (2.12)

In the context of the identification and control involving dif ferenr '01

segments of data, we have approximate independence between the processes

u(z), n(z) and the transfer function relative estimation error R(z)-

Thus the tracking error due to the input and disturbance excitation Rs well

as the plant modelling error is

l2 -2 j I "2

Sn(Z)JI a IVar [R(z)]J
(z-i)+ aj 2

(2.13)

where G(z) and J(z) are the closed loop transfer functions from II
the input excitation and disturbance noise excitations respectively

to the plant output, and where Sn (z) is the spectrum of the plant

disturbance and measurement noise as seen at the plant output in open loop

operation. ,S.

It is seen that as the input excitation is increased, the control

tracking error increases for a fixed relative modeling error R(z) , but

the increased excitation decreases the relative error in identification. -

The quantity Var [ Rfz) I the relative squared error of identifying the

transfer function is derived in Larimore (1985b, Appendix E). This is a

function of the characteristics of the plant transfer function as well as

those of the process and disturbance noise spectruam charactqrhstics. The

expr,.asions tor computing these quantities are straight forward but not

easily expressed analytically. Thus. as. in the stochastic dual control

literature, the optimal design is analytically intractable and requires a

numerical approach.

16-

2-|1



RU

2.7 Computational Considerations

In this section the major computational steps in the algorithm are

described. The detailed computationai equations are contained in the

appendices.

The computational steps in the identification algorithm are shown in

Figure 2.2. In the identification of the plant, first the covariance among

the past and future are computed. Second, a canonical correlation analysis

between the past and future is performed. From this, a comparison of the
various state space model orders is computed using the AIC criterion. On

the basis of this, the best state order is selected and the state space

matrices computec, by regression. This state space model is then used in

the MAC controller. The detailed computations of these blocks are con-

taiied in Larimore (1983, in Appendix B) except for the AIC computation.

An approximate AIC computation is given in Akaike (1976) as

AIC(k) - E logl-y 2 ) +2pk (2.14)
J-1

where Pk is the number of parameters fitted in the model.

To evaluate the AIC, the number of free parameters adjusted in the
canonical variate pro'cedure is required. For a state space model of state

order k of the form of Zquations (2.3) and (2.4), there are a number of

implied constraints so that it is not correct to simply count the number of

elements of the various matrices. The number of functionally independent

free parameters Pk incluning th• process at0 measurement noise covariance

is (Candy. Bullock. and Warren. 1979)

Pk -2kr#+n(n,1)I2+ki=+nm(21)4

Xa

where n and = are the vector dimensions of the number of outputs and

inputs respectively at a given time. If there is no Instantaneous feedfor-
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ward, then the term nm is deleted, while if there is no input the terms

km + nm are deleted.

The AIC expression (2.14) is only approximate, and the precise eva-

luation is given by computing the state space model 6k for compet'ng order

models and doing an exact evaluation of the AIC by t.S

Aa

AIC(k) -2 log p(Y,Ok)+ 2Pk (2.16)

011

The state order is choser which minimized the AIC(k).

The major computations are the covariance and the singular value decom-

position Once thc plant state order is determined, the computation of the 5
state spact tu:ricies requires relatively little computation. For slow

identification ratt•. the computation becomes proportional to the sample

size times the the dimensi• n of the past and future, while for fast iden-

titication rates, the compuLAtion is proportional to the cube of this

dimension,

* V4%
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PART 2

CHAPTER 3

MULTIVARIABLE MAC IN A CLASSICAL CONTROL FRAMEWORK
[ f ag , •4..,,

N6-

3.1 Introduction

The theoretical properties of MAC have been studied in details in

the previous report (AFWAL-TR-80-3125) using the impulse response (IR)

model of the plaat. The reason fo. tieing the IR description of the .,'-'

plant is that the MAC software (known as IDCOt,) uses this description

of the internal model in the computation of the control sequence. The

IR description of the plant is the basis of the PAC technique where a

quadratic optimization problem is formulated explicitly in terms of
the future control sequence. The IR description of the plant is

superb from the computational point of view, but it has a disad'!antage

that this description is not parsimonious i.e. it contains too many

parameters and is therefore not suitable for analytical studies. "

Since one of the objective of this project is to investigate analyti-

caly vari-us aspects of MAC, the MAC technique is described in this

chapter in terms of a difference equation (DE) iodel of the plant,

The DE description usually contains far fewer number of parameters 4

than an IR description and Is therefore suitable for analytical studies

if a low order plant is selected in the analysis.

There it no mAthematical model for a generaliz-;d MAC with ,

multistep ahead optimtiatton horizon, input blocking, input

constraints etc. Therefore it Is noE possible to invemtigAte analyti-

cally the propertieu of a generalized MIAC control l1,w. The MAC str4-

tegy generates an optimal control sequence by on-line optioization of

a cost functionl and the first element of this sequence Is applied co

the actual system. It has been shown in an earlier report that if the

plant r islnisut phase and the cost functional is optimized over one

step ahead, then the MAC control law can be interpreted in a classical

control. framewaork. In this chapter we extend this interpretation to



multivariable systems and indicated how the robustness of MAC can be

assessed in this framework.
* II I

Section 3.2 extend the earlier descriptions of MAC to multi-input

multi-output (MIHO) systems which shows that MIMO MAC can also be

interpreted in a stundard unity feedback configuration. With a slight

modification of this configuration it is shown that MAC can ba

explained in a multivariable root-locus framework. The root-locus

technique gives the locations of the closed-loop poles as the ottput-

feedback gain is changed from zero to infinity. Usually a rational

transfer function or difference-equation (DE) model of the plant is

used in this technique. Therefore in order to cast MAC technique in a

root-locus framework, MAC has been described in section 3.3 using the

DE model of the plant. Using this analysis, the root-locus interpre-

tation of MAC is presented in section 3.4. Finally the MAC for a

lightly damped system is discussed in section 3.5 where it has been

shown qualitatively that one should not try to use a high gain output

feedback to introduce sufficient damping in a lightly damped system,

otherwise a high sampling rate may have to be selected. Conclusions

are discussed in section 3.6.

3.2 What .ts MAC? - An Overview

MAC control strategy has been described and analyzed in earlier

reports and publications (1,4,5,61. We include here a simple descrip-

tion of MAC for the saks of completeness of thiv report. The

following is *A extended version of the earlier descriptions for MI1O

plants.

The MAC twthodology generates a control sequence by on-line opti-

zizatian of a cost functional, and the algorithm Is suitable for

iaplesentatilon o4 microprocessor*. One of the >utractive features of

*AC ig the clear and transparent relationship beteen system perfor-

rance and vprtous design parameters zabeddod Ir the design procedure.

There are five basic elements In MAC (Ne as~ume in the folloving that

the input sequence urn) is in-dimensional and output sequence y(n) is

p-dL=enstonal) :
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(i) An actual stable plant, possibly not known exactly, with a

pulse response sequence {Hnj, n=l,2,...N where each Hn is pxm dimen-

sional matrix (we assume for simplicity that the plant has no time

aelay axd is purely dynamic i.e. it has no feedthrough term). Then

the input sequence u(n) and the output sequence y(n) are related by

y(n) = H, u(n-1) + H2 u(n-2) +...+ HN u(n--N) (3.1a)

or, Y(z) = H(z)U(z) (3.1b)

where U(z), Y(z) and H(z) are z-transforms of u(n), y(n) and tHn}

respectively.

Here

H(z) H1z-' + H2z- 2 +...+ HNz-N Hp(z)z-N

where Hp(z) is a pxm dimensional polynomial matrix in z and is
given by

Hp(z) = HlzN-1 + H2 zN-2 +... + HN (3.1c)

This model is known as an "all-zero" model and Hp(z) determines zeros

of the plant. The locations of non-minimum phase zeros impose

restrictions on achievable performance of MAC. We must remind the

reader that the physical interpretation of zero in the impulse

response model of the plant is different from that of a transmission zero

in a rational transfer function model or equivalently difference equation

(DE) model) of the plant. In the same way Lhe physical interpretation of

poles as natural modes of a plant are lost in this description. However

this point will be elaborated further in the next section.

(ii) An internal model of the plant having the same input-output

dimension pxm as that of the actual plant and the pulse response

sequence •ni, n = 1,2,...R. The input u(n) is the same as that to the

actual plant and therefore the output y(n) of the model is given by

,(n) = f1 u-,'-1-1) + Ri2 u(n-2) +...+ R u(n-R) (3.2a)

or ?(z) R(z) U(z) (3.2b)

where, as before

3-3
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fl(z) - RP(Z) Z*-R (3.2c)

and Rp(z) is a pxm dimensional polynomial matrix. {Jn} is generally

different from lHnl.

(iii) A p-dimensional reference trajectory Yr(n), preferably

smooth, initialized on the current output of the actual plant y(n) that

leads y(ri) to a possibly time vart'!rig p-dimensional set. point c. If each

of the reference trajectories yri(n) has a first order dynamics with time

consLant •, leading to set point ci, i-1,2,...p and if the trajectories do

not interact with each cther then Yr(n) evolves as

Yr(n+l) Aa yr(n) + (I-As)c, y-(n) - y(n) (3.3a)

or, zYr(z) Aca Yr(z) + (I-Aa) C(z) (3.3b)

where Aa = diag (ai)

(iv) A closed loop prediction scheme for predicting the future

Soutput of the plant according to the scheme

yp(n+l) - y(n+l) + yp(n) - i(n) (3.4a)

or, Yp(z) - 1(z) + z-1 [Y(z) - ?(z)] (3.4b)

- yp(n) is p-dimensional.

(v) A quadratic cost functional J based on the error between

Yp(n) and Yr(n) over a finite horizon Tn (here Tn is an integer):

In
J - ( [eT(n+k) W(n+k) e(n+k) + (3.5a)

| ~uT(n+k-1) R(n+k-1) u0n+1-0)

nT
"ITr) (W(n*k) e(n+k) eT(n+k) + (3.5b)
k-1

R(n+k-0) u(n+k-1) uT(n+k-1)]

where W(.) and R(.) are positive semi definite time varying weights and
e'." e(n+k) - yp(n+k) yr(n+k). In most of MAC applications R(.) is set to

be zero.

3-4
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Given (i)-(v), MAC finds as optimal control sequence {u*(n+i-l),

i=l,...Tnl by minimizing J over the admissibie input sequence

Iu(n+i-l)cS1(i), i=l...Tnf. Once the optimal control sequence is com-

puted, the first element of the sequence is applied to the actual

plant and the process repeats all over again.

In general, there is no analytic solution for the control

sequence {u*(n)1 - it is computed at each step using an algorithm

known as IDCOM. In its greatest generality, MAC cannot be put into a

classical control framework. However under the following simplifying

assumptions MAC is equivalent to an inverse-control law and can be

modelled as a feedback configuration.

(i) The actual plant H(z) is minimum phase;

(ii) The plant model R(z) is minimum phase;

(iii) There are no input constraints, i.e. i(i) - Rm for all i;

(iv) Tn=l i.e. the optimization is carried over one future step

* ahead; under this condition MAC is a one-step ahead pre-

dictive controller.

" LUnder these simplifying assumptions, it is sufficient to select

u*(n) to satisfy

yp(n+l) Yr(n+l) for all n > 0 (3.6)

for a minimum of the cost function J. The assumptions (i)-(iii)

ensure the existence of an optimum control u*(n) that satisifies

(3.6) - the resulting optimal cost J is zero in this case. However

U*(z) is then implicitly generated by Yp(z) - Yr(z) so that

U*(z) - [(z-l)f(z) + (Q-Aa)H(z)[-1 (I-Aq]C(z) (3.7a)

¥(z) - H(z) [(z-I)f(z) + (-An)Ii(z)1- (I-AnC(z) (3.7b)

l l Equations (3.7a) and (3.7b) relate the setpoint C(z) with the optimal

input sequen- ),(z) and output sequence Y(z). It is easy tc see that

this simpl'fled form of MAC is equivalent to the following MIMO unity

feedback configuration (we have henceforth dropped the * superscript).
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Figure 3.1 MIMO MA-C in a classical framework

To see that the setup in Figure 3.1 indeed represents equation (3.7),

note that at point I we have,

U~) 1 R-1l (z)([-Aa•)E(z)
jZ-1u(z) z--

"1-'T (z)(I-At) [C(z) - (z)u(z)j

Multiplying both sides of this equation by (z-i)R(z) and rearranging

:we have,

((z-1)IR(z) + (I-Aa2)H(z)1 U(z) (-(lAcL)C(z)

from which (3.7a) and (3.7b) follow. The block within the dashed line can

be thought of as a dynamic controller of the classical type. The loop

transfer function when the loop is broken at the plant input (point 1)

is given by

ULz) - •jiI-(z)(1-AcL)H(z) (3.8)

and determines the robustness of the feedback configuration at this

4

4 3-6

! % ILI



point. When we have perfect identification i.e. H(z) = R(z), then

points 2 and 3 are the same in Figure 3.1 and

0(z) - Y(z) =-L (I-AO)E(z)Z-1

or, B(z) =--jT- (I-Aa) (C(z)-t(z)]

or, zD(z) = Aa U(z) + (I-Aa)C(z) (3.9)

Equation (3.9) is equivalent to

which shows that i(n) is the reference trajectory sequence yr(n) as

shown in equation (3.3a). This means that when the plant model is
known exactly, the control sequence U(z) is generated as

U(z) H-1 (z)A(z) = H-l(z)Yr(z) (3.1Oa)

Therefore the output of the actual plant is

Y(z) - H(z)U(z) = Yr(z) (3.1Ob)

which shows that, in steady state, the plant output y(n) is identical

to the reference trajectory Yr(n) - perfect tracking has been .-;.•

achieved. Equation (3.1Oa) clearly shows the need for minimum phaseness of

H(z). This analysis has revealed another interesting property of MAC.

Exact tracking could as well be achieved by inverting the plant to

generate the sequence a(n) in an open-loop configuration, but in MAC it

does so in a closed-loop configuration and thereforc the additional

benefits of a feed-back configuration such as disturbance rejection,

sensitivity reduction, etc are also obtained at the same time while

achieving exact tracking.

Further insight is available if we interpret the above equations

for SISO plants. The loop variables for SISO plants are denoted by

corresponding small letters, e.g. h(z) is a transfer function for a '.4 %.

SISO plant and H(z) is that for a MIMO plant. Also for a SISO loop AQ (k,

an! tOe Flvur" 311 takes the following simple form:
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Figure 3.2 SISO MAC as a classical controller

Note that in this figure (1-a) can be treated as a gain and the usual

classical root-locus technique can be applied to analyze the behavior

of the closed loop poles as a changes from 0 to 1. But since the

impulse response description of a plant has too many poles and zeros,

the root-locus technique will not be useful and this is why we intend

to describe MAC in terms of a difference-equation (DE) model of the

*|i: plant in the next section.

3.3 Lightly damped system in terms of difference equation (DE) and

- impulse response (IR) model

Consider a generic lumped parameter linear time-invariant (LTI)

systerA

-(t) - Ax(t) + Bu(t), x(O) - x0  (3.1la)
Sy(t) - CX(t) (3.lib)

Swhere x(t), u(t) and y(t) are n-, m- and p-dimensional vectors ,.'epre-

senting the states, inputs and outputs respectively and A, B, C have

appropriate dimensions. The corresponding frequency domaia descrip-

tion is
4 !

X(s) " W(s)BU(s) and Y(s) , CO(s)BU(s) 11c(s)U(s) (3.12)

where O(s) (sI-A)-! axd 11c(s) is the impulse response of the system.

If Ai - a wiij is the i-th eigenvalue of A, then the system is

4 a
-3-
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asymptotically stable if ai < 0 for each i and in this case each elhc-
ment of Hc(s) is analytic in the closed right half plane. On the

otherhand, the system is unstable if ai ; 0. If Hc(t) is the itiverse

Laplace Transform of Hc(s), then for asymptotically stable systems

each element of Hc(t) approaches zero as t+-, whereas for an unstable
system some element diverges. If the impulse response Hc(t) of a

system takes a long time to settle down to zero, the system is

generally known as a lightly damped system. The damping ratio asso-
ciated with the i-th complex pole-pair Xi a- Jwi is defined as

Sail + Wi Z(3.13)

so that 0 < 41 1. The system is lightly damped if ýi is small which

results when Jail is small, i.e. the system is lightly damped when at %

least one of the poles lies near jw-axis. These systems show unde-

sirable behavior of "ringing" and excessive "overshoot" in open-loop

transient response. The impulse response of these systems decays to

zero very slowly, and therefore a large amount of data must be stored
in the computer for representing the impulse response sequence model

of the plant which directly affects MAC computation.%.9

Since MAC is a digitally implemented control algorithm, we must

find a sampled-data version of (3.11). There are several ways of

implementing digital control schemes - one of these is the sample and 4.

zero-order hold mechanism which is equivalent to discretizing (3.11)

by using an exponential transform. In this method the input is
sampled every T seconds and held constant, i.e. u(t) = u(n), nT 4 At .

(n+1)T between the two sampling instant. In this case the z-domain
% ."

and s-domain descriptions are related through

z - esT (3.14)

and the corresponding discrete-time system in state-space description

is

x(n+l) - Fx(n) + Gu(n), x(O) xO (3.15a)
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y(n) = Cx(n) (3.15b)

where F = exp (AT), G - (F-I)A-IB, provided that A-1 exists, otherwise

T
G - y exp (Aw)dwB (3.15c)

If the system (3.15) is asymptotically stable, the zero-state solu- *1
1 tion of (3.15) is given by

n-1
4. y(n) i Hn-i U(i), Hn = CFn-! G, n > I (3.16a)

i=0

which is the familiar discrete-time convolution. Notice that if T is

very small, to the extent that max IAijTI << 1, where Aij is the
ii : iiL

(i,j)-th element of A, then

Hn z C exp(A(n-I)T)BT (3.16b)

which also results if the integral in (3.15c) is approximated by the lower

Riemann sum. Taking the z-transform of (3.15a) - (3.15b) we get the

frequency domain description,

Y(z) • Hd(z)U(z), (3.17a)

where

Hd(z) - C(zI-F)-IG (3.17b)

The power series expansion of H(z) gives

Hd(z) - C(I/z + F/z 2 +...) G ?. HnZn (3.18a)
n

with the region of convergence (ROC) 1zJ > max Iji(?)I. We can
t

recover tHni from Hd(Z) using a Cauchy Integral as follows
¶1e 

1in 1 I d(z)n- dz - CFn- 1 G (3.18b)

2vj

which is the same in (3.16a).

Ideally an IR sequence (inj computed in the above manner has an

infinite number of terms. Since MAC uses in its internal algorithm a j

3-10



X
finite impulse response sequence lHnf, the matrix valued sequence {Hnl

must be a fast converging one. The poles in the continuous time

system Xi and those of the sampled-data system zi are related by zI

exp ('i~Therefore the discrete time system is unstable if fzjj I 1

for any i and is a lightly damped system if Jzij<l but close to unit

circle i.e. Izil1. In the earlier case {Hnj diverges and in the

later case iHn} has a very large number of terms before it converges

to zero. If the system is asymptotically stable IHn1 converges, and

given e > 0 we can always find an integer N(e) such that 0 Hn a < e

for all n ) N and we can truncate the impulse response sequence to any

desired degree of accuracy. The finite impulse response description

is also known to practicing engineers as a moving average (MA) or all

zero model of the plant.

Now suppose that an impulse response has been truncated to obtain

a finite sequence tHn} = {HI,H2...HN}. MAC uses this description of

the plant model as shown in section 3.2 for a lightly damped system.

This sequence is relatively long. The z-transform H(z) is given by

N null

Comparing with (3.18a) we find that

iHd(z) =H(z), Iz1 >> 1.0. (3.20)

Here Hd(z) will be called a difference equation (DE) description and

H(z) an impulse response description. ALthough Hd(z) and H(z) are

approximately equal for all z within the region of convergence, the

physical interpretation associated with the two description are

different. To see the differince clearly, consider a SISO plant in

which case Hd(z) and HW(z) are complex scalars and represented respec-

tively by Hd(z) and h(z). Then I
hd(z) bz)a(z'-

where a(z) and b(z) are polynomials in z, b(z) having a lower degree

than a(z) for a causal system. The zeros of the denominator a(z) are

3-11



the 'poles' of the system hd(Z) and are associated with the natural

modes of the system. The impulse response (IR) of the system is com-

posed of these modes. The zeros of b(z) are transmission zeros of the

plant which have the physical interpretation that if zi is a zero of

the plant and if zi is also a mode of the input to the plant, then

this mode of the input is blocked by the plant and does not appear at

the output. On the otherhand the IR description h(z) can also be

written as

h(z) = n(z)

where n(z) and d(z) are polynomials in z. Here d(z) - zN, and n(z) is

a polynomial of degree N. This shows that h(z) has N poles at the

origin and N zeros - but these poles and zeros do not have any physi-
* *a cal significance as in the rational transfer function model hd(z).

Since we want to explain the behavior of MAC in terms of standard

* pole-zero configuration, our immediate objective is to describe MAC

using a difference ea'tation model.

3.4 MAC with Difference-Equatioti Model: a Root Locus Approach

Consider again a pxm dimensional MIMO plant Hd(z) with input U(z)

and output Y(z). Then parallel to the description of MAC in section

3.2, we can describe the various elements of MAC as follows:
9,%

(i) The actual plant described by

Y(z) - Hd(z) U(z) (3.21)

(ii) The internal model of the plant, also described by a

"rational transfer function description and given by

td) - U(z) (3.22)

(Iii) A p-dimensional reference trajectory Yr(n) which evolves as

Yr(n+l) - Aa YrCn) + (-A 0a)c, Yr(n) y(n)

4 *4
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or, zYr(z) Aa Y(z) + (I-Aa)C(z) (3.23)

(iv) a closed-loop prediction scheme yp(n) for predicting the

future output of the plant, according to the scheme

Yp(n+l) - (n+l) + yp(fl) - ý(n)

or, Yp(z) z) + z-1 [Y(z) - Y(z)J (3.24)

(v) and a cost functional as in (3.5) ,j4

If we compare the expressions in (3.21)-(3.24) with those in

32.1b)-(3.4b), we see that these expressions are the same mathemati-

cally although in (3.1b)-(3.4b) we have used the IR description of the

plant whereas in (3.2l)-(3.24) we have used the DE (rational transfer

function) model of the plant. This comparison reveals the important

fact that the basic principle of MAC does not depead upon the model

description of the plant i.e., whether the model is described using a

difference equation or impulse response. Therefore, for a one-step

ahead prediction horizon, the interpretation of MAC as a feedback con-

figuration (as st•wn in Figure 3.1) is also applicable in this case.

The important difference in this case is that if we use the DE model

of the plant, we can associate the traditional pole-zero interpreta-

tion to MAC. Indeed if 4e choose cxj a making the dynamics of all

the reference trajectoriis the same, then we have Ac - al and the

Figure 3.1 then is a familiar unit feedback MIMO configuration with " X

(1-a) playing the role of a va.:ying gain. There are two advantages of

this configuration:

M() the closed loop pole position can be ascertained apriori

using the multivariable root-loctis approach;

(ii) robustness of the closed loop can be -.xamined in terms of

the recently developed criteria employing the loop transfer %.

function and return difference function at appropriate i-N

points in the loop.

-'9-
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3.4.1 Root Locus Analysis of MAC

Consider, for simplicity, a SISO plait with an actual transfer

function h(z) and suppose that Its model. is given by Q(z). We assume

that both the plant and this internal model iý. described by difference

equation. Note that we have dropped the subscript d here from the

previous section for notational convenience.

AN It is not obvious how y(n) will be affected ýE a changea, but the

effect can be analyzed as if we are finding the ro;,t locus of the
n

* closed-loop configuration in Figure 3.2. We can coasider both a and

r:(z) as parameters that can be varied to regulate the closed-loop

behavior of the system. Indeed if,

n(z) h(z) (3.25)
d(z) (z-O)Fi(z)

wher n(z), d(z) are polynomials in z,

h(z) = plant transfer function in DE description

F(z) - model of the plant in DE description

the closed loop poles will :race a continuous path from the open-loop

* poles (i.e. poles of the plant, the zeros of the model and the zero at

z-l) io the open-loop zeros (i.e. poles of R(z) and zeros of h(z)) as

the gain varies from 0 to infinity. But here the gain (I-o) varies from 0

to I as a varies form 0 to 1. So the closed loop poles trace a path

put the problem into 4 standard framework of root locus. w Introduce

a one-to-one invertible mapping:

* (3.26)
1-t

so that as q changes from 0 to 1, 6 changos from 0 to infinity.

Let 11(z) nh(z) and fi(x) h(z)
~~T tit+, "Z) •

From Figure 3.2 it :an be shown that the Input-output of the closed-

loop is given by

1 4-



h,,1~z) (1an y(z) -hcl(z) c(z)
d+( -l-C7Ln

where for silwplcity we have written "i

n -nh(z) ah(z), and d (z-1) ;h(z) dh(z)- (3.27) P

For convenience henceforth we shall suppress the argument z. Using

the transformation a -gives

n (3.28)

hc~) deq + aneq

where deq nha + (z-l)iihdh

neq d (-)a1hdh

The closed loop characteristic polynomial is

Ocl(z) -deq~z) + 13neq(z) (3. 28a)

lZ is obvious *hat i

Mi as 6*0 i.e. a0O (fast reference trajectory). the closed

loop poles approach the zeros of deq(z) -flhah + (Z-1)ahdh.

Depending on the characteristics of this polynomial the

closed loop response may be oscillatory, damped and/or

uns table. E_

(ii) as 6$* infinity i.e. a~j (slow reference mrjectory), the

clo-3ed loop poles approach the zeros of neq(W, i.e. one

pole approaches +1 and the remaining, polers approach the MM

poles of the plant and the trinsmission zeros of the model.

Th~e pol at t- will contribute to the gugiZsh response of

the closed loop system.

So the problem of obtaining a specific respon-%e from K(AC can be

tr~nslat.Ld in~o the degign of the polynoatlak nvq(z) a-,d d".1(0- If

Athe open loop poleia ar- not located In the appropriate region of the

z-plane. we can chooge the model of the plant. I.e. ;h and aj stach

3-0s



that the zeros of the polynomial deq(Z) are placed accordingly and the

specific response can be obtained asymptotically as 6+0. Note that

the stability of the plant or the model is not required when analyzing

MAC in a root locus framework. The problem is algebraic in nature,

i.e., is a problem of synthesizing a specific polynomial deq(z).

3.4.2 Examples

In this section we will demonstrate the above anaLysiv through a

simple example.

Eixample 3.1

Consider a scalar dynamic system

x(t) ax(t) + bu(t), x(O) x0  (3.29a)

y(t) -cx(t). (3.29b)

Suppose the input and ouput are sampled every T seconds. Then the

corresponding discrete-time (scalar dynamic system, as obtained by

using the exponential transform (3.14). is

X01+0 = fx(n) + gu(n) (3.30a)

y(n) - cx(n), (3.30b)

f- e4T attd g -4T- . Nov %uppose that the model of

the plant ig

%(n+1) N ?(n) + gu(n) (3.31a)

i(n) -ci(n) (3.31 b)

For simplicity. let us chose c-1/g. Then using the notation of the

previous section wo have

flhMz I ;h(z)fio

hnz)- ) |) U ,h z_



Therefore, using the notation in (3.28),

deq nhah + (z-O)nhdp = z-7 + (z-1)(z-f),

neq (z-i)dhnh = (z-1)(z-f),

and the closed loop characteristis polynomial is

1cl(z) deq(z) + Oneq(z)

S(z-1) + (z-l)(z-f) + a(z-l)(z-f).

As ý+O (i.e. a+O: a fast trajectory), the closed loop characteristic

polynominal asymptotically approaches

43cl(z)+ z 2-fz+(f-l)

and the closed loop poles approach

zi,2 + f± Vf2_(f_.) (3.32)

Suppose f=0"9 and the model is perfect, i.e, ?=0-9 too. Then

since the plant is minimum phase, tlý closed-loop transfer function

for all values of 8 is, from (3.27),

Shcl(Z) = 1-_-- (3.33)

z-c

i.e., the perfect tracking has been achieved. This is shown in Figure

3.3, for c*O'Ol.

When I = 0.1, and equation (3.32) indicates that the closed loop

poles approach 0"45±jO077. The closed loop response therefore is

o3cillatory which is demonstrated in Figure 3.4 for uc0OQ1. If

f=-01, the closed loop poles approach 0"45±J•O90 - the closed loop

response becomes further oscillatory, which is shown in Figure 3.5 for

the same value of a. Similary a choice of ?--0.4 places the closed

loop poles at 0"45±jl'047 and the simulation has indeed shown the

instability.
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It may also be noted that as 8÷', one of the closed loop poles

approazhes +1.0 which implies the loss of asymptotic stability or a

very sluggish response therefore highly undesirable to operate MAC

with a large 8 (or, a nearly equal to 1). But the problem with

smaller 8 is that, along with a fast response, the bandwidth of the

closed loop system is increased and the possibility of excitation of

the unmodelled dynamics is also increased. A compromise, therefore,

is needed while choosing the value of 8

To see how the root-locus interpretation helps in determining MAC

behavior, let us consider the case of a perfect model and assume that

the system is minimum phase. Then from equation (3.2),

n(z) 1
d(z) z-1

and
nh = ;h, dh = ah, Seq = znhdh, neq (z-l)nhdh

1u(z) = znhdh + a(z-0) nhdh
Clearly then as 8.0, (or a+ 0), one closed loop pole approaches the

origin z=0 and the others approach the zeros of nhdh. The later

poles, however, get cancelled eventually (indicating that these mode

become asymptotically either unobservable or uncontrollable) and the

pole at z-0 becomes dominant, and a fast response is available from

MAC. On the other hand an B-' (or, cro1), the dominant pole is the one

as z-1 and a sluggish response is obtained. All of these analyses

agree with the obscrved behavior of MAC in everyday use.

3.5 Apriori fixed Gain Compensation of a Lightly Dampei System

or Unstable System.

A lightly damped system has a long impulse response (IR) sequence

and therefore imposes burden on the computer storage. If the impulse

response is sampled according to Nyquist sampling rate, an Vmpulse

response sequence of 60-150 elements are very common for a lightly

damped system, particularly if the system has a frequency mode. It

has been proposed that some additional damping may be introduced into

3 -1'-19 S



the system by applying output feedback and then MAC be applied to the

overall system. It is the purpose of this section to investigate if

apriori fixed gain output feedhtck can be useful for MAC application.

Since there is no mathematical model available for a standard regularI

MAC with multistep prediction horizon, input blocking etc, we can not

investigate analytically the effect of apriori output feedback on MAC.

So the following analysis is based on the available properties of out-

put feedback and our analysis is more qualitative then quantitative.

We shall primarily emphasize on the issue that whether we can make the
length of impulse response shorter using apriori fixed gain analog

compensation of the plant.

3.5.1 Qualitative Analysis

In Section 3.4, we have characterised a lightly damped system by

its pole positions. Roughly speaking, a continuous time dynamic

system is lightly damped if any of its poles lies near the jw-axis in

the s-plane. Similarly, in discrete time domain, a system is lightly

damped if any pole lies near the unit circle on the z-plane.

Physically it means tha the impulse response (IR) or the IR sequence

is relatively longer. This fact plays an important role in the MAC

technique, because the latter uses the IR descritpion of the plant. A

lightly damped system has a relatively longer IR sequence and there-

fore uses more computer storage compared with a damped system. Since

an unstable system has an infinitely long IR sequence, the current MAC U

implementation using the IR can not handle such systems.

If a system is open-loop unstable or lightly damped, it can be

made stable or damping can be added apriori using constant or dynamic

output feedback. The compensated plant with possibly a shorter IR

sequence can be thought of as a new plant and MAC can then be applied

to it for improved performance - the overall configuration is hybrid

in nature. For simplicity, consider again a SISO plant

k(t) - Ax(t) + bu(t), x(O)=x 0  (3.34a)

A"I
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y(t) cx(t), (3.34b)

where x(t) is n-dimensional and A,b,c have appropriate dimensions.+ If

an output feedback control law is chosen of the form

u(t) - -ky(t) + v(t), (3.35)

the closed loop system is given by

x(t) - (A-bkc)x(t) + bv(t), x(O)=x 0  (3.36a'.

y(t) cx(t), (3.36b)

and the closed-loop poles are given by the eignevalues of A-bkc. The

hybrid system as a result of application of MAC is shown in Figure

3.6.

The speed of response and bandwidth of the system can be increased

using output feedback. This makes it necessary to use a higher

sampling rate for the compensated plant. This point needs some clari-

fication. Although the Nyquist criteria holds for bandlimited

signals, engineers have selected sampling rates accoriing to this cri-

teria, whether the signal is bandlimited or not, i.e., a rate of at

least twice the highest frequency in the osckllatory modes in a plant.

Similarly in a system without any oscillatory modes, the sampling rate

is selected at a rate determined 6y the "Bandwidth (BW)" of the

system. We may recall that the BW of such systems are defined as the V,P. •

frequency where the magnitude of the loop-transfer function drops off

to half of its dc value. In this section we will see how apriori out- P"

put feedback affects MAC ptwrformance via the sampling rate selection.

The effect on robustness .aill be discussed in the next chapter.

Case 1. When the Plant is Open-Loop Unstable:

* If the states are available for feedback, then it is well known

that under the assumption of controllability, the closed loop poles

can be placed arbitrarily in the complex plane using constant-gain

state-feedback. But in the case of constant-gain output feedback,

3-23
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this freedom is lost and the poles are moved accordingly to the rules

for root locus. But, as we know, it may not be possible to stabilize

an unstable plant by constant-gain output-feedback- the interested

reader may consult Youla's elegant work [Youla, et. al, 1974] for

details. In such cases, the plant must be stabilized first by using

dynamic output feedback before MAC can be used on the overall plant

hf(s) in Figure 3.6. However once a stable hf(s) is obtained MAC

treats it like any other stable plant.

Case 2. When the Plant is Lightly Damped:

If the open-loop plant has all the transmission zeros in the open

left half of the s-plane (OLHP), the gain k can be made high and

arbitrary fast response can be obtained without destabilizing the 4

overall plant hf(s). As k÷-, some of the closed loop poles approach

the finite transmission zeros of the plant and the remaining ones

approach infinity. The limiting dynamical behavior of hf(s) is deter-

mined by the location of the transmission zeros. If the system has

closed right half plane (CRHP) (in the s-plane) zeros, k can not be

increased arbitrarily.

IkSX

The BW of the overall system hf(s) in Figure 3.6 is determined by

the fastest dynamics which in turn are determined by the poles that

move toward infinity. Therefore as k+0, the plant output must be

sampled faster and faster to capture the dynamical characteristics of

the overall plant hf(s). The situation is even worse if the

transmission zeros are stable and lie near the jw-axis. In this case,

as k-, some of the closed-loop poles arrive at these zeros and there-

fore hf(s) is lightly damped again. The IR of this system is composed

of slow dynamics as well as of fast dynamics - the modes corresponding

to slow dynamics make the impulse response of hf(s) long and the modes

corresponding to fast dynamics dictate a fast sampling rate. The net

result is that the tR sequence of the discrettzed system has possibly
many more terms then the uncompensated plant. Therefore, there is a

trade-off between the damping added to the system using output feed-

back and the resulting sampling rate.

3-,
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Although the length of the impulse response gets smaller as a

result of damping added, we may keep the sampling rate unchanged so

that the number of terms in the IR sequence is smaller. This

obviously deteriorates MAC performance. We illustrate these ideas

with two simple examples.

3.5.2 Examples

Example 1.

* IConsider again the scalar system of the last section;

* c(t) - -ax(t) + bu(t), x(O)=x 0  (3.37a)

y(t) = cx(t), (3.37b)

where a,b,c are scalars. Let us assume c-1, then the open-loop

transfer function cf the plant is hc(s)=b/(s+a). Although there is no

oscillatory mode in this system, we will call it a lightly damped

system if a=O. Using an output feedback control law u--ky+v, the

closed loop system is

x(t) - -(a + bk)x(t) + bv(t), x(O)-x0 (3.38a)

y(t) - x(t) (3.38b)

and the closed-loop transfer function hf(s)-b/(s + a + bk). The power

spectrum is

l lhf(jw) 12 - b (3.39)
w 2 + (a+k) 2

Clearly if the BW w0 of this system is defined as the frequency ur0 at

'.4 which Ihf(jwo)I - p thf(JO)I, where p is a constant, then w0 is given

by

'"( (lip2 -1) (a+k) 20f. (1.40a)
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The sampling time interval T is given by

T 1 __'K ". (3.40b)
2fo

S(lip--1) (a+k)

The last equation shows that as k is increased to add more damping,

(or, strictly speaking, to get a shorter duration IR sequence) the BW

w0 is also increased and so does the sampling rate. The discretized
system corresponding to (3.38) is obtained via an exponential trans-

form as

x(n+i) fx(n) + gu(n) (3.41a)

y(n) - x(n) (3.41b)

where

f = e-(a+k)T and g f-i b (3.41c)

We shall examine how the MAC performance varies for a given T as k

changes. Suppose a-l and b-1O and consider the case for k-0; then for

a choice of T-0.1 Sec, f-0.90484 and g-0.95163. MAC is applied to

this system with a set point of 15.0, a-0"1. The result is shown in

Figuree 3.7. Next k-10 is selected. For the same value of T, the

discretized system parameters are f-0-332871 and g-0-6064 8. The

result of applying MAC to this system is shown in Figure 3.8. Notice

the difference between the control efforts in the two cases. In the

later case, the same sampling interval of T-O01 secs has captured less

dynamical characteristics than the earlier case and the controller has

spent more control effort in the stady-state tracking.

Example 2.

Next consider the decoupled longitudinal dynamicu of ati air-to-air

missile (cf. AFWAL-TR-80-3125) (11.

-1.4868 1.00 0 U(Mt
x(t) - x~t) +

149.93 0 -281.11
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y(t) ( O O)x(t)

where x(t) = xl(t)\
x2( t)I

xl(t) = angle of attack in radian
x2 (t) = perturbed pitch rate (rad/sec)
u(t) = elevator angle (rad)

The eigenvalues are at sl,2 = -0.7434±ji2.22

1. 4868 ___

The damping ratio 0 = 1.4868 0.061

'11.48682 - 4 149.931

-- The system is lightly damped with a natural frequiency of 1.95 Hz.

Therefore, the output must be sampled at least every 1/4 sec. Using

negative feedback of the output, the closed loop system is given Dy,

t1.4868 1.00 )0vtt)Sxt) =x(t) + I~ t

-149.93 + 28I. Iik 0 (-281.1

y(t) (1 0) x (t)

The damping ratio of the closed loop system can be found as

o= 1.4868
/

1(1.4868) 2 - 4(149.93 + 281.11k)

4. Clearly for k > 0, •o ý o . As k increpses, the system approaches

being undamped and accordingly the sampling rate decreases up to about

k=0"531 when the system becomes critically damped. As k increases

further both poles are real - one mode becomes fast and the other mode

slow thus making the IR even longer until k-0"533 when the system is

marginally stable.

As in the last example, T=0.i, set point ý 15.0 and a0.1 is

selected. The result of application of MAC to the uncompensated

plant, i.e. k=0, is shown in Figure 1.9. Now when k-0"53289, the com-

pensated system is sampled in sampled at T-0,1 seca. and MAC is

applied to the discretized system at this sample rate. The resuit is

shown in ýigure 3.10. As in the last example, the control eifort
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rk

needed to keep it in the right trajectory is larger than for uncompen-

sated plant.

3.6 Conclusion

The main contribution of this chapter is the description of MAC for

Multivariable system in section 3.2 where it has been shown that the

classical-contro ler interpretation of MAC can be extended to MIMO

systems. This interpretation of MAC will help the designer to apply

the recently developed robustness analysis tool to MIMO MAC. Another

important contribution of this chapter is the description of MAC using

the rational transfer function (or difference equation) model of the

plant - MAC can then be interpreted in a root-locus framework and

explained using traditional pole and zeros of a rational transfer

function. Finally in section 3.5, the effect of apriori analog com-

pensation on the MAC performance has been investigated qualitatively.

It has been found that if the addition of output feedback creates a

faster mode than in the uncompensated plant, the sampling rate must be

increased accordingly to capture the dynamical characteristics of the

compensated plant. Otherwise MAC performance will deteriorate.

q

"*'
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CHAPTER 4

ROBUSTNESS ANALYSIS OF MAC

4.1 Introduction

Any model of the plant is almost invariably different form the actual

plant for many reasons. For the purpose of synthesizing a finite dimen-

sional controller, the plant is modelled as finite dimensional even though

the plant may be of a distributed nature or may have delays embedded in it.

Usually the high frequency part of a plant is neglected and the model

emphasizes the low frequency behavior of the plant. Even though a plant

has been modelled accurately in the past, low frequency error is introduced

eventually due to aging, deterioration etc, On the other hand a control

law is designed on a nominal model and implemented on the actual plant.

The nominal control law therefore must be robust enough to ensure the per-

formance level for the actual plant. The purpose of robustness analysis is

to examine the range of the nominal control law maintaining the closed-loop

stability and performance level for all the plants around the nominal

model. The classical designers measure the robustness (with respect to

stability) of a nominal control law by its gain-margin (GM) and phase-

margin (PM). In this chapter, the robustness of the MAC control law will

be studied from the viewpoint of a classical controller and therefore MAC

must be modelled as a classical controller. We have already developed a

model of MAC of this type in the preceeding chapters which we summarize

here again briefly. For simplicity of analysis, we shall consider SISO

plants only. The MIMO plants are described in Larimore, Mahmood, and Mehra

(1984).

This chapter is organized as follows. The MAC model developed in the

previous chapter is briefly reviewed in Section 4.2 -- this model is the

basis for all subsequent analysis of robustness. Classical gain margin

(GM) and phase margin (PM) for MAC are analyzed in Section 4.2.1. The

robustness in terms of GM and PH can handle a limited class of plant per-

4-1
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turbations; therefore a more generalized class of perturbations are charac-

terized and robustness evaluated in Section 4.2.2. Since a rational

transfer function model usually has far fewer numbers of parameters Chan in

the impluse response (IR) description of the plant, a robustness result is

derived for such models in Section 4.2.3. A simple analytical example is

presented in Section 4.3. Finally the chapter is concluded in Section 4.4.

4.2 Review of MAC Model for Robustness Analysis

Let us recall that under some simplifying assumptions, MAC can be

modelled as in a classical control framework. The underlying assumptions are:

(i) the actual plant h(z) is minimum phase

(ii) there are no input constraints, i.e. ) R for all i,

where R is the real line

(iii) the optimization is carried over one future step ahead i.e.,

* (T -1); under this condition MAC is a one-step ahead pre-

dictive controller

J The transfer functicng under the MAC control law for MIMO plants have been

developed in Equations (3.7a) and (3.7b). The corresponding quantities for

SISO plants are:

2_ u(z) . _I - a (4.1a)

c(z) (z-l)E(z) + (1-c)h(z)

c(z) h(z)(1-a) (4.1b)

e(z) "(z-,)(z) + (1-a)h(z)

-. Equations (4.Ia) and (4.1b) imply that MAC under assumptions (i)-(iii)

** is equivalent to the classical unit feedback configuration of Figure 3.2

Sin an input-output sense. The figure is again reproduced in the following

for convenience:

4-
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- -- -- 1  coupensator

_ - l, p'a

c (Z) e (z) (Z) p y(z)
z-.u h(z)

L I

Figure 4.1. MAC as a Classical Controller

This interpretation of MAC is the basis of our analysis of MAC in the fra-

mework of classical control.

4.2.1. Phase and Gain Margins

The block within the dashed line can be considered as a dynamic

controller of the classical type. The loop transfer function 1(z) at point
1 is

I|! h(z)( I-a) (4.2a)1(z) = Tz)(z-)1

and the return difference function is

I + l(z) - fi(z)(z-l) + h(z)(I-a) (4.2b)1 1(z 5(z-iT

Note that since we are dealing with a SISO loop, the loop transfer function

at any point of theloop is same. For MIMO loops, the loop transfer func-

tion depends on the point where the loop is broken because of the non-

commutativity of matrices. PIowever, in this case the error" y(z) in

tracking e(z) , c(z) - y(z) is given by

e(z) - (1 + l(z))-! c(z)

so that the steady qtate error due to a step input is

ess(t) lir (1+l(z))- - (0 + 1(0)) - 3
z*!

....



whether the model is exact or not. This is a consequence of a built-in

integrator in the compensator.

It may be noted from Figure 5 that at point 2, ;(z) - yr(z) when

h(z) W Ei(z), where Yr(z) is the reference signal. In this case the input

u(z) to the actual plant is generated as U(z) - Yr(3)/h(z) and therefore

y(z) - h(z)u(z) = Yr(Z). This shows why perfect tracking is possible

under perfect identification. We will, however, now pursue this issue

further.

It is obvious from Equations (4.1) and (4.2) that the closed-loop

system is internally asymptotically stable if the roots of the rational

function

*cl(Z) = (z-l)h(z) + (l-a)h(z) (4.3)

are within the open unit disk z < 1, and these roots are also the

roots of the return difference function I + 1(z). We can therefore

find the stability margin in terms of the gain margin (GM) and phase

margin (PM) from the Bode plot or Nyquist plot of the loop transfer

function l(z) evaluated on the contour z = exp (jwu) appropriately

indented around the poles on this contour. Recall that in continuous-

time, the GH and PM are those values of k and * respectively such that

the perturbed loop 1(s) - kexp(jW)l(s) is stable, where l(s) is the

nominal loop and s is the Laplace variable. A similar interpretation

goes for the discrete-time systems (Kuo(1980)); but the PM, unless it

is an integral value of the sampling interval, does not have any phy-

* sical significance. Strictly speaking the complex constant kexp(JO)

in continuous time should be replaced by kz-n, n an integer, for

measuring GH or PH of the discrete-time system.

Another way to compare with other continuous-time domain design

techniques Is that each element of the disarete-time loop should be 1

transformed into an equivalent continuous-tiie element using the bilinear 4.

transformation, and PM of the fictitious continuous-time loop can be taken

Sat the PI of the discrete-time loop. In this paper the word PM is usod to

me.mn the rent Intins,-ttmq.tsquiva lent phase margtn. We r4n now %tate U

S4-4
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Theorem 4.1

Under assumptions (i)-(iii), MAC has GM (0, 2/(l-a)), equivalent

PM - Cos-I (l-a)/2, and unity gain cross-over frequency wo

2sin"I (l-a)/2.

Proof

The proof is trivial if we recall that PM and GM are measure on a

nominal loop. Here we can assume that the nominal plant h(z) fi(z),

which implies hi = hi and N = because both h(z) and fi(z) are power

series in z-I. This nominal loop transfer function from (4.2a) is

then

I-a (4.4)"1(z) = z,

i.e. an integrator delayed by one-step. Evaluating on z exp(jw), we

get

1-a -a w (4.5)
l(exp(jw)) L 2 cot

2II

and Il(exp(JwO)l - 1.0 implies that unity gain cross-over frequency at

wO - 2 sin-I a (4.6)2

The Nyquist plot of the discrete-Lime loop in Equation (4.5) is quite

simple and from the plot it is easy to see that the system is stable for

all gains in the interval (0,2/1-a), and a pure delay 0 - 90* -Sin-(1-a)/2
will change the number of encirclements by the Nyquist contour, thus making

the system unstable.,4-'

To get the equivalent PM we transform each element of the loop

using the bilinear transformation s (z-l)l(z+l)-l to get the equiva-

lent continuous loop

L2, (4.7)
2 s

From the Nyquist plot of I(s) it is obvious that GM (0,2/(-a)) (same as

found by analyzing the discrete-time Nyquist plot) and a P = CWso 1(1-a)/2.
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Theorem 1, although very simple, reveals some intuitively

appealing results about GM and PM of MAC. We can make the following

remarks.

Remarks

1) Since ae[0,1], the guaranteed upward GM is 2 and the PM is

600.

S2) We can always trade-off robustness against the speed of

response. As response speed is increased by decreasing a, BW

Wo = 2sin-l (l-a)/2 increases (which makes sense) with a con-

sequent reduction of robustness in terms of GM and PM.

3) We get this remarkable PM even though MAC is an output-

feedback controller possibly because the plant is inverted

causally through the use of an optimization algorithm in the

sense that at each time the algorithm provides the controller

with the entire future input sequence. For the same reason,

the discrete-time loop has a one pole roll-off for all fre-

quencies - which is rather unusual.

4) Theorem I ensures that the controller can stabilize the loop

for all the plants thij belonging to the set

* I~hilhi =kh~,i'I.. kE(0,2/(1-c&))}.

4.2.2. Plant Robustness Analysis for Generalized Perturbations

The nominal model F(z) is usually dUiferent from the actual plant

h(z) for various reasons. Sometimes F(z) is deliberately made simple

to &acilitate the control computation by retaining the modes in the

active frequency range. On many occasion it is difficult to model

Shigh frequency modes, and these are simply neglected. Due to ageing,

etc.. the modes of the actual plant drifts slowly thus introducing

* low-frequency error. Thus the modeling error e(z) has in almost every

-, case, a dynamic strticture; and the information about eaz) must be

Incorporated in designing a nominal loop. As a minimum amount of
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information e(z) is expressed as an upperbound on le(exp(jw 1; and the

purpose of robustness analysis is to find a requirement on the nominal

loop interms of this upperbound so that the closed loop performance

and stability is maintained in the face of modeling uncertainty.

Usually the admissible uncertainties are expressed in two ways:

additively or multiplicatively. If we take fi(z) as the nominal plant,

then in an additively uncertain model, we express the actual plant

h(z) as

h(z) f=(z) + Aha(z) (4.8)

and in a multiplicatively uncertain model, the actual plant h(z) is

h(z) - R(z)(l + Afim(z)) (4.9a)
h(z) = h(z) Ahm(z) (4.9b)

For single-loop systems the order of multiplication in (4.9) is not rele- .1V

vant, but for MIMO cases the order is important because of the non- ,a.

commutativity of matrices where input channel (left) uncertainty and

output-channel (right) uncertainty must be distinguished. Both of the
aR'

multiplicative forms in (4.9) are often used in analysis, but in this paper
*I ý

we shall be using (4.9b). Note that at nominal values of the plant, Aha(z)

Am (z) = 0 and &hm (z) - 1. Also note that the classical GM and PM

ensures the stability of a perturbed plant of the form (4.9b). If the GM

is k, then Ahm(z)-k, and if the PM-n (in the sense of discrete-data

system), Ahm(z)_z-n. These are undoubtedly a limited class of allowable

perturbations and we must consider other possible error-structures in

designing the nominal loop. The framework of (4.8) and (4.9) is more

general in the sense that it can handle a constant, nonconstant and even

dynatuic model mismatch (say for example unmodelled poles, etc.). Let us

rewrite fi(z) and h(z) as

) - - ,hpCz) (4.10a)
i-'

where hp(z) - . Z a polynomial in z.
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and h(z) = z-N hp(z),

N

" i 1%,•4then by straightforward manipulation, the closed loop characteristics

S:::•polynomial is

*clp (z) = zN(z-l)hp(z) + zý (1-c)hp(z) (4.11)

>J with p denoting that we are considering the polynomial part only.

For closed-loop stability, *cl,p(Z) must have all the roots strictly

inside the unit disk IzI=l. For perfect identification R=N,

hp (z)=hp(z), and Pcl,7(z)zN(z-Q)hp(z). Of course the zeros of hp(Z)

. •I will be cancelled eventually leaving the only closed loop pole

at z=-. However N, the order of the true plant, is usually unknown, and

therefore in real-world situadions (4.11) can not be evaluated. The actual

plant h(z) must be considered as a perturbation of the nominal plant h(z),

and the stability conditions must Se derived in terms of the nominal

sequence j•i} and the perturbation Aa(z) or Ahm(z). Let us assume that

Aha(z) and &hm(z) can be expressed as in (4.10), i.e.,

Na

.ha(z) = haiz-

z-Na6hap(z), Ah0 p(z) a polynomial in z (4,12a)

• 6 h (z) 4hm iz-I-Z-Nmhmp(z) . (4.12b)

although the following theorem can be developed without such an expli-

cit form. Note that the index in (4.12b) must start from 0 to accoao-

date constant multlplicative perturbation. We have the following

theorem on robustness:

* 'I
"" "•." 4-R
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Theorem 4.2

(i) The system is closed-loop stable for all additive pertur-

bations Aha(z) satisfying

[Ahp(ZI J -2a Cosw + a2

-hap(z)( < V - o .I (4.13a)

and z= exp(jw)

(ii) The system is closed-loop stable for all multiplicative

perturbations 6h,(z) satisfying

hmp (Z) - zNMI z a (4.13b)
a lk-R

. on the unit circle where Ahap(z) and Ahmp(z) are given by (4.8).

Proof. The proof is straightforward if we express h(z) using the

form (4.10)-(4.11), find the corresponding closed-loop characteristic polyno-

mial, and finally use Rouch's theorem to prove (4.13) on the assumption that

* the nominal loop is internally stable and hence (z-aL)fip(z) has all, the

roots strictly inside the unit disk IzIil.

The tests of the type given in (4.13) are sufficient conditions

and generally tend to be conservative. Nevertheless we can make the

following remarks:

(i) Both tests (4.13a) and (4.13b) are useful. For example when

an actual known model Ihi, ial,...,Nt is truncated to

obtain so - ;I Nj, so that lAhal * hi, i-,.

R+I,...N and Ahal - 0, 1 < F}, stability around Jhij can be

obtained from (4.13)

(ii) For constant multiplicative gain mismatch, i.e. hi ,ki!!1!!!I °oe.,
*for all i, (Ahmi k when 1- and Ahmi a 0 when i > 01, sop

that hmp(z) W kz and test (4.13b) yields that the system

a ¾i lllIt fo l uhta

lk 11 < I 01 z - ezp(jw) (.4

4-9 4-
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But it is easy to see that min lexp(jw)-czj = 1-a so that (4.10)

becomes Ik-(1<1 which implies kc(0,2). This clearly shows that: these

tests are conservative. (See remark (4) of the previous section).

It can be shown trivially that near w-O, the bound on the RHS of

(4.13a) is meaningless; almost any reasonable perturbation will satisfy

this sufficiency condition at low frequencies, but the above inequality

must be obeyed for each wc(O,l] particularly at high frequencies.

We note further that given any perturbation Ahp(Jw), it is extremely ,

difficult to come up with a stable design to accomodate it. On the other

hand, given any stable design we can only make statements about the size of

* a perturbation the design can tolerate, and perhaps from our previous

experience we can change the nominal design iteratively to accomodate the

given perturbation.

n 4.2.3. Robustness Analysis When the Plant Model is Described by a Rational

Transfer Function

In the previous section we analyzed the robustness of the MAC

control law for systems represented by an impulse response sequence.

In this section the analysis will be carried out tfor plants described

by Difference Equations (DE) - this will yield more insight into the rela-

tion between the robustness of MAC and the design parameters embedded

in it.

We analyze again under the usual assumptions, viz,

(i) the system is minimum phase

(ii) the optimixzig horizon is oue-step in the future
(iii) there are no constraints either on the input or any other

loop variables

Under choue 4usumpttons, the MAC control lwv 1s given by equationc

O.W•)-(.1b) -and the equivalent clastical network is given in Figure 4.1.

Obviously then the loop transfer funetion Is.

1(n) *(1-n)h(z) (•a.1So)



so that the return difference function is

I + l(z) = 1 + (1-ca)h(z) (z-1);(z) + (1-a)h(z)
(z-)TT (z) (z-l)h(z) (4.15b)

Clearly the -losed loop poles are given by the zeros of the numerator

(4.15b). We have shown in the previous section that the MAC control MIAL

law is nominally closed loop stable for all values of a, o~a~l.

A typical Nyquist plot is shown in Figure 4.2. It is obvious from

the figure that at any frequency wo, the loop transfer function

l(e0°) can tolerate a maximum perturbation of 1l+l(eJ'oi and yet the
V•%.

Nyquist plot will not change the number of encirclements of the -I+jO

point. This observation leads to the following theorem on additive

perturbations. i.--

tumgiaary axis

1(z)-plane

Real aids

Figure 4.2. A Typical Nyquist Plot

Theorem 4.3

Suppose the loop is nominally ttablc. The the perturbe! loop Is stable for

all additive perturbations Zl(z) satisfyingi

where %j varies over the unit circle if l(0) I1. analytic on the contour •1,

Sal -or over any guitable indcnted contour ot, the unit circle to

bypass any stn-gularity of I(z) on the unit circle.

.aI



Proof: A heuristic proof should be obvious from Figure 4.2. A

rigorous proof follows from a straightforward application of Rouches'

Theorem as in the previous section.

A similar theorem can -e developed for multiplicative pertur-

bations. Theorem 4.3 gives the sufficiency condition for stability.

Its usefulness lies in the fact that given an apriori knowledge of a

perturbation that satisfies the inequality (4.16), the Theorem guarantees

the stability of the closed loop system for such perturbation. For

example if a high frequency mode is neglected or if the modes are not

"correctly modeled, the discrepancy is expressed in an additive form and a

test of the type (4.16) must be carried out after a nominal control law has

been found.

We can find a more specific form of Equation (4.16) as follows.

*: Suppose the nomimal (or identified) plant is i(z). The true plant

h(z) is assumed to lie in a neighborhood of i(z), and suppose h(z) is

an additive perturbation of h(z). In this case

h(z) SW(z) + Aha(z) . (4.17)

The designer usually has a knowledge of an upperbound on iAha(ejw)I.

The nominal loop transfer function 1(z) and the nomimal return dif-

- ference function I + h(z) can be found from Equation (4.2). These are

1(z) =L- , 1 + 1(z) = z
z-1 z-1 (4.18)

Let Al(z) be an additive perturbation of the nominal loop 1(z) when

the nominal plant S(z) is perturbed to h(z) as in Equation (4.17).

Then the perturbed loop transfer function 1(z) + Al(z) can also be

evaluated using Equation (4.2) and we get

1(z) + Al(z) h(z)( -I
h(z)(z-1)

-4-1
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from which we find

Lj_(z) - 6ha(z) 1 ̀ _• (4.19)

Therefore using Theorem 4.3, we conclude that the closed-loop is

stable for all perturbations 6ha(z) which satisfy

N ha(z)1 < -_cI jh (z)l (4.20a)
1- C

on the unit circle z-exp(jw). This inequality can further be

simplified to

IAha(eJw)I < 1 1 + a- 2a Cos t I•(iw)I , (4.20b)

which can bE verified easily by plotting these functions.

It is very important to note that the conditions developed in

Theorems 4.1, 4.2, and 4.3 are all sufficiency conditions and not

necessary ones. if atty perturbation Aha(z) or Al'z) violates these

conditions, the closed loop is not necessarily unstable; on the other

hand, satisfaction of these conditions necessarily guarantees asymp-

totic stability of the perturbed closed-loop provided that the nominal

closed-loop is stable.

4.3 Examples

In thi4 section, the main features of the analyiss of the last

section are demonstrated through a simple example. Since the IR

description contains many more parameters than in the DE description,

we use a rational transfer f%nction model of the plant, The Theorem

4.3 will be used to evaluate the robustness against modelling mismatch

of the true plant.

Example 4.1

Consider again the example of a scalar dynamic system of the last

chapter. Suppose it has been modelled as

4-13
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x(k+l) = I x(k) + gu(k) (4,21a)

y(k) = cx(k). (4.21b)

Assume for simplicity that cg=l so that the rational transfer func-

tion of the model is

l• h(z) = (4.21c)

z-f

Then if the true plant h(z) = (z) + Aha(z), according to Equation

4 (4.20b) the closed loop is stable for all Aha(z) satisfying

lAha(iw)I < V I + a 2a Cos w (4.22)

.% (I - a) / I + ?z -2? Cos w

Now suppose that the actual plant is of the form

x(k+l) = f x(k) + gu(k) (4.23a)

y(k) = cx(k) (4.23b)

which is the same as the nomin~t model in (4.21) except that the true

mode f is different from the nomimal mode !. Therefore

h(z) (4.23c)

and 4ha(eJw) is of the form

Aha(IjW) f- .(4.24)

'A j2w -eiw(f+j) + t

Given a nominal MAC loop for a .pecified •, the loop is stable for all

* f's if lAha(Jw)I evaluatL-d from (4.24) satisfies the inequality

(4.22). We selected 1- 0.3 and tested inequality (4.22) for three

different f's: f - 0.8. f - -0.3, f - -0.8. In all cases, the set

point - 15.0, and o-0.1 are selected. Since I is the same for all

three runs, the right-hand side of (4.22) is also the s.me and is

shown as a thick line in all the plots. The left-han4 side of (4.22)

is shown In dotted lines.
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Case 1: = 0.3, f = 0.8

Here the true plant has the mode at 0.8. For perfect iden-

tification the MAC response is ehown in Figure 4.3a. For an iden-

tified plant mode at ?- 0.3, thP sufficiency conditions are displayed

in Figure 4.36 - which shows tbat. this perturbation satisfies the ine-

quality constraints in (4.22'. The closed loop, therefore, is

guaranteed to be stable as showa by the MAC performance for the per-

turbed loop in Figure 4.3c.

Case 2! ? = 0.3, f -0.3

MAC performance for the true plant f--0.3 is shown in Figure 4.4a.

The sufficiency conditions are displayed in Figure 4.4b which shows

that the inequality has been violated. 3ut because these conditions

are only sufficient, w2 cannot say anything of the stability of the

loop. In this particular situation, the perturbed closed loop has

turned out to be stable as shown i., Figure 4 . 4 c.

Case 3: 1 - 0.3, f - -0.8

MAC performance for the true plant at f -0.8 is shown in Figure

"4.5a. The two sides of inequality (4.22) aie drawn in Figure 4.5b,

which shows that, as in Case 2, the sufficiency condition has been

violated. But this time, the closed loop is unstable, as shown in

Figure 4 .5c. "

4.4 Conclusion

An analytical model of MAC was developed in Chapter 3; we have

used that model in this chapter to snalyze the robustness of MAC. The

robustness as been assessed ina classical control framework. The

classical GM and PH of MAC are given in Theorem 4.1. The upward GM

can be increased arbitrarily by slowing down reference the trajectory,

PH can go up to 900. GM and PH can guarantee stability against a

limited class of plant perturbations, therefore a new framework for

analyzing 4eneralized perturbations has been developed in Section U
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4.2.2 and the main result in this direction is presented in Theorem

4.2. The corresponding analysis for models described by rational

transfer functions is given in Section 4.2.3 and the main result is

presented in Theorem 4.3. Theorem 4.1 and 4.2 can be readily verified

plants in the neighborhood of the identified models which are

guaranteed to be closed-loop stable whenever the nominal loop is stable.
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CHAPTER 5

SAMPLING INTERVAL & CONTROLLABILITY

5.1 Introduction

Sampled-data (SD) systems are becoming increasingly important

with the advont of cheap computing power of microprocessors. Although

these systems have been studied for a long time, very few researchers

have explicitly dealt with the design of a suitable "sampltng time

interval 'T'. Almost all literature dictates a sampling rate

satisfying the Nyquist rate--although the latter is applicable only

for band-limited systems. For the systems with undamped modes, only

certain discrete values of T are excluded (Chen, 1970) to guarantee

the required rank of the "'Controllabiity Matrix" of the SD systems.

Nothing further is said as to what values of T should be chosen once

the rank condition of this matrix is satisfied.

A recent study in this direction is by Reid et al.(1979), where T

is uniquely chosen to maximize the robustness of a dead-beat coatrol

law. Although this is a significant step towards the characterization

of a unique T, the procedure has limited application because not all

of the SD systems will be used for the purpose of dead-beat control.

M4aximiztng the determinant of the product of the controllability

matrix and its transpose are much discussed in the literature, but

without onv rational justification.

In this study we have provided 4 logical 4nd intuitively

appealing framework for choosing an optimal, unique T. Aur analysis

is based on two intuitive ideas:

(1) that the acount of energy needed to drive a discrete system

from an arbitrary initial state to the origin is a measure

of the controllability of the system.

"_) ~that the amount of energy is alsc a measure of the degree of

effectiveness of various conuol coponets.



A minimum energy terminal control problem is formulatied which

explains controllability in a quantitative framework and its relation

with sampling time T. The solution is given in terms cf the

"Controllability Grammian," and a natural choice of T is made by

maximizing tbe minimum singular value of the Grammian matrix over a

compact interval of T. The excitation ability of various control

* components (or equivalently how effectively each control component

influences the dynamics of the system) depends upon the relative

orientation between the space spanned by left eigenvectors of the

system matrix and the range space of the input distribution matrix,

It is extremely difficult to visualize the interplay between a

changing T and the relative orientation of the spaces. T'is has led

us to solve the problem implicitly as a minimum energy problem where

the relative orientation changes automatically as T varies to provide

optimal effectiveness of the unt- 7-mponents.

Sometimes control components may have different costs. We would

prefer, then, that the two spaces adjust to reflecc the relative c¢ats

so that the system uses more of the cheaper controls than others. We

have implemented this idea by introducing an "input-weighted

controllability Gramian" matrix.

The above ideas can be dualized to find an optimal T from the

viewpoint of observability. Here T is chosen to minimize the maximum

possible energy in the outputs for arbitrary initial states. Since

the Hankel matrix is the produ':t of the controllability and

nbservability matrix, the corresponding values of T can be deduced

-, from Lhe singular values of the Hankel matrix, too.

In sections 5.2 and 5.3 we briefly discuss the relation between

SD systems and the original continuous time systems and the privious

results on the controllability of the SD systems. Section 5.4 also

contains a brief discussion on modal controllability and

observability. In section 5.5 we have formulated the minimum energy

problem in the new perspective for finding an optimal T. Section 5.6
deals with the observability issues. Conclusions are given in section
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5.7. The analysis has been kept limited to LTI systems for the sake of

clarity although generalization to time varying systems are concep-
tually straightforward.

5.2 Problem Definition

Consider a linear time-invariant continuous-time system

x(t) = Ax(t) + Bu(t) (5.1a)

y(t) = Cx(t) (5.1b)

where x(t) e Rn, u(t) e Rm, y(t) e RP and A, B, C are matrices
of compatible dimensions.

There are many sampling schemes to discretize the system (5.1).

We shall be using here the "sample and zero-order hold" sampling

mechanism, because it is casier to implement and probably the scheme

most widely used in industries. Under this scheme the input is held

constant during the sampling interval and the corresponding discrete

system is given by

x(k+l) = kx(k) + Gu(k) (5.2a)

y(k) = Hx(k) (5.2b)

F = exp(AT) (5.3a)

T1%
G = [Of exp(Av)dv]B (5.3b)

0

-(F-I) A71B, when A is nonsingtilar

H= C (5.3c)

and exp(AT) is the transition matrix associated with (5.1). The

solution of equation (5.2) is given by

k-i
X(k) = Fkx(O) + E Fk-l-u(i) (5.4a)

i=0
y(K) Cx(k) (5.4b)

where Fk is the state-transition matrix of (5.2).
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Roughly speaking the conzrollability of a system refers to its

ability to steer any initial condition x(0) at k=0 to the origin at

k >0 for finite k, whereas the reachability refers to its ability to

steer the srstem from the origin to any given state in finite time.

Because of the non-singularity nature of exp(AT), the notions of

controllability and reachability in continuous-time systems coincide.

For discrete timi systems, obviously a sufficient condition for the

system to be controllable is that Fk be non-singular for each k, i.e.,

the system has the ability of backward transition whereas the

reachability is the property of the range space {FkG}, k =01..

The controllability can be checked through the controllability

Gramarian formed over a finite horizon; and for time-invariant

systems, a horizon of n-steps is necessary and sufficient. The pair

{F,GI 13 controllable if the Controllability Grammian

k-iW(O~k = E -iG G'(F-i)(5)

- is non-singular for any kýn. Equation (5.5) also shows why the

non-singularity of F is necessary.

4ý In a sample and zero-order hold mechanism, F is given by (5.3a)

which means F is necessarily non-singular for any A. Thus the notion

of controllability and reachability are the same, and we shall be

using the word controllability hereafter to denote both concepts.

Sometimes the discretization mechanism (5.3a) goes by the name of
1 "exponential transform." It is obvious from (5.3a) that under this

mapping, both the continuous-time and the sampled-data system share

the same eigenvectors and their poles are related through

zi - exp(siT)

where si and zi are respectively the ith eigenvalue of F and A. Also

note that

-'.
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2T
:r

f exp(Av)dv is always non-singular even if A is singular,
0

because

T n
det[ f exp (Av)dv] HI Pi * 0.0

0

where

11 - exp(siT) when sj * 0
Pi whe si

(5.6)

T when sij 0

Equality (5.6) is obvious from the Jordan form of A.

5.3 Controllability and Observability of SD system:

The controllability and observability of the time-invariant (TI)

sampled-data system is a well-studied topic. Probably the mostly used

criteria is the rank condition of the controllability matrix C and the

observability matrix 0, where

C [G : FG .-. Fn-IG] (5.7a)

and

[HF]

0 = (5.7b)

The system is controllabl.e if p(')=n and the system is observable

if p(O)-n, where p(A) denotes the rank of A. The matrices F and G

depend upon T whereas H does not. One way to determine the role of

the sampling time interval T on the controllability and observability

of the system is to check the rank condition of the matrices in (5.7)

as T is continuously increased. The most significant results

available in this direction are contained in the following theorem

extracted from [2].
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THEOREM 2.1

Assume that the continuous time system (5.1a) is controllable. A

sufficient condition for the discrete time system (5.2a) with

coefficients in (5.3) to be controllable is that Im[Xi(A)-Xj(A)I*

2-nk/T, k=±l,±2,... whenever Re(Xi(A)-Xj(A)],0'O. For the single-input

case, the condition is necessary as well.

We can make the following remarks as a corollary of Theorem 2.1:

*" 1 1. The conditions are also sufficient for maintaining the

observability of the SD system, because the pair F, H is

observable if ar d only if the pair (F', H'} is controllable;

and the Theorem gives the condiLion in terms of the

"*' eigenvalues of A, not in terms of H or G.

2. If Xi=oi ± Jwi is any complex pole pair of A, T should not

be chosen such that T=k7/wi, k=±l,±2 .... Therefore for SISO

S•ystems, as Ti is increased, SD system (5.2a) loses

controllability for as many values of T and their integral

multiples as there are complex pole pairs. Obviously by a

continuity argument we can say that the controllability

matrix will be ill-conditioned for T in the neighborhood of

*these Ti's.

3. Although not related to this theorem, another requirement on *

T to avoid aliasing effects is that we must sample the

system at a Nyquist rate at the least. If wrmax-mfx Wi,

then T should be selected such that

T < (5.8)
%max

Ncte that if we choose T=•/,ax exactly satisfying the Nyquist

rate, we lose controllability for SISO systems.

*s,-
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5.4 Modal Controllability and Observability

Theorem (5.1) does not provide any "quantative" information on

the "degree" of controllability which is best explained by modal

controllability. The concepts of modal controllability and

observability are old and can be found in any standard text on control

theory. In this subsection we discuss briefly how the sampling time T

is related to these ideas. Assume for simplicity that A is

diagonalizable. The modal decomposition of A is

A = WAV' (5.9)

where A is the diagonal matrix containing the eigenvalues Xi of A, W

and V' are respectively the matrices containing right- and

* left-eigenvectors of A.

If wi and vi are right- and left-eigenvectors respectively

associated with ith eigenvalue Xi, then

" W col (W1, w2,-.oWn) (5.10a)

Vi

V' row (v1 , v2 , ... (5.1Ob)

and

WV' V'W In

Then the modal decomposition of F is

F = W exp(AT)V' - W AF Vt

Awhere (AF} =exp XiT - zi, the i-th mode of the SD system (5.2). By

straightforward calculation, (5.4) simplifies to

"n k-I n
x(k) = Z (zi)k (vix(O)) wi + Z Z (zi)k-1 i (vjG)u(i)wji0(5.1 a)
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n k-i n
y(k) = Hx(k) = E (zi)k (vix(O))Hwi + E E (zi)k-l-i(v G)u(i)Hw(J)

J=J i.0 J.1j~uiHwJ4 i1(5.1ib)

It should be apparent from (5.11) that it is the row vector (vjG)

that determines whether the control at the i-th instant u(i) will have

any influence on the J-th mode of the system. If this row vector is

identically zero for any J, i.e., if vji left ker (G) then the J-th

mode is uncontrollable and the component of the state in the subspace

spanned by j-th eigenvector cannot be controlled. Similarly if gk is

the k-th column of G, then mJk = <vj,gk> determines the sensitivity of

the k-th component of the control uk on the J-th mode. In particular,

if we form the n x m matrix M = {mjk}, .=l,...n, k=41,...m, where

M = V'G (5.12)

we can deduce the controllability as well as the "degree of

controllability" of various imput-components from the entries of M. M

is called the modal controllability matrix. To increase the

sensitivity of the k-th control on the j-th mode, we should design gk

as much collinear with vj as possible. It is easy to show that M is

related with C in (5.7a) as

n-1

C =W[M AFM : AF' MI (5.13)

where W is the matrix of right eigenvectors as defined in (10), and if

any row of M is identically zero then the controllability matrix C

becomes rank deficient.

* ~For the zeroeth order sample and hold (S&H-) mechanism under

consideration

T T
M = V f exp (Ax)dxB exp(Ax)dx)V'B (5.14)

0 0

"Now V'B and A are predetermined by the continuous-time system (5.1a).

"- The only variable here is T which can be adjusted to regulate the

clements of 5.

*1~ *5-8



Following the same argument as above we can deduce from equations

(5.11) that the degree of the modal observability is given by the

modal observability matrix N where

N = HW (5.15)

and the observability matrix in terms of N is I
N

= F V' (5.16)E-]
Since H-C and W is predetermined by the continuous-system, N is

not affected by T , i.e., the modal observability matrix of a

discretized system is the same as in the continuous-time system
although the observability matrix 0 in (16) is dependent on T. This

shows that the sampling time T will have more impact on the "degree of

controllability" than on the "degree of observability" because T

influences both the system matrix F and input matrix G forming the i

controllability matrix.

5.5 Sampling Time to Maximize the Degree of Controllabilit.

In this section we formulate a minimum energy terminal control
problem for the discretized system and explain why this scalar measure

can be naturally taken as a "degree of controllability." Finally we

choose T to optimize this scalar measure. Recall that a controllable

discrete system can be driven to zero-state from any initial state in

n-steps which motivates an optimization horizon of n-steps. Consider

then the minimization of the cost functional

min J(x(0))= - n -I(u(i),i-!,. n) 2 =IE ()()J• (1='i> 5[a

subject to
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x(i+l)-Fx(i) + Gu(i) (5.17b)
x(O) given, and x(n)=O

Obviously, if the modes are sensitive to the control-components,

the system can be driven to (n)-O from (0) with lower expense of

%' input energy than if the modes are insensitive to control components.

This fact is reflected in the construction of J. The relative

orientation between the left eigenspace of F and the range spacp of G

(or equivalently the elements of M) and the elements of F are adjusted

autctatically while minimizing J. Note also that the relative cost of

various input components can be reflected through the weighting matrix

R, which possibly may be time varying.

The minimization in (5.17a) can oe carried out using the

ordinary-least-square technique or using Linear-Quadratic (LQ) theory

from modern control, although we shall be using the latter to get a

better perspective of the problem. The Hamiltonian sequence H(i)

H(i)=u'(i)R(i)u(i) + p'(i+l)[Fx(i) + Gu(i)] (5.18)

where p(i) is the sequence of Lagrange multiplier.

The necessary condition of optimality gives [3],

x(i+l) - Fx(i) + Gu(i) (5.19a)

M p - F'p(i+l), i=O, ,...n-I

* subject to a given x(O) and x(n)-O, and ihe optimal control sequence

is given by

u(i) -Rl(i)G'p(i+) (5.19b)

Solving in terms of p(O)(note that F is non-singular in our case)

and matching the boundary values of x(i) at 1-0 and n, we get,

"successively,

p(i) (F')-ip(0)

u(i) =-R-!(i)G;'(FI)-i-Ip(0)

p(O) - w 1(O,n)x(O)

5.4
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i ~n-!

W(O,n) = F-i-GR-I(i)G'(F')-i- (5.20)
J=0

Here '1'(0,n)=W(0,n) is the usual controllability Grammian except that

it is weighted by a sequence R(i), and consequently W(0,n) in (5.20)

may be called "Input-Weighted-Controllability Grammian." The optimal

control sequence is

" ~u*(i)--R- I(i)G'(F)-i-Iw- I(0 ,n)x(0), i=O,...n-1 (5.21)

and the optimal cost J* is

n-i n 2
j* = E u*'(i)R(i)u*(i) - x'(O)W`-(O,n)x(O) r (1/oi) ci

i=O i=l (
(5.22)

where oi=i-th eigenvalue of W(O,n)

ci - <x(O),ui> projection of x(O) on i-th orthonormal
eigenvector of W(On)

Remarks:

1. W'(O,n)-W(O,n) and is positive definite if the system is W %

controllable. If the system is not controllable aciO for at least one

I and therefore infinite energy is required to bring the initial state

x(0) to zero, which makes sense physically.

"2. W'(O,n)-W(On) > 0 which implies the oi's are also the

singular values of W(O,n).

"3. Since the matrices F, G depend on T (the sampling time), the

aot's and consequently the minimum J are dependent on T. As we have

seen from theorem 2.1, as T increases from zero to infinity, the

discretized SISO system loses controllability around Tin/Iwi, making

some ai equal to zero and hence J* in (22) goes unbounded. For other

values of T, the oi's are non-zero and finite and J* is also finite.

4. The use of the matrix R(i) weights the share of various

control components in the minimum energy. The cost of various control
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components can be reflected through R(i). For the single-input case,

the use of R(i) is superfluous and can be set equal to 1.

5. Note that an equivalent controllability Grammian P(O,n) can
be formed from the controllability matrixV veighted by. the sequence

R(i) as follows:

Q(O,n) =W'diag (R(i))re

E Fn-iG R-1 (i) G'(Fl)n-i (5.23)
i=l

"-: Although rank [2(0,n)j-rank [W(O,n)), the singular values are

* different. For this modified controllability Grammian 9(0,n), matrix

inversion of F is not needed.

* We are now in a position to find an optimal T on a rational basis
,,' The maximum possible normalized energy is

J jaa x'(O)W-1 (On)x(O)

x(0)CRn x (0)x(O) X(0) %'(O)x(o)

I Il-t(o0n)II -(O~n)) 1 1, (5.24)

Swhere -. 112 deniets the itiduced Euclidean norm and o(),a(.) is the

% maximum and minimum singular value respectively. From (5.22) it is

obvious that J* is bounded above and below as

1 IX(o• 112 J* IIx(O))11 (5-25a)

0 € < J N (5.25b)o(W) C(u)

where W(On) has been denoted by WA for the sake of brevity.
*be

.4 ft
,-. A rational choice of T is to minimize the upperbound of JN as

iuch as possible, i.e., the optimal T-T* should be such that

N,
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T* Inf JN (5.26a)
T

Since JN is bounded below by zero and we shall be working with a

compact interval I=[O,t], (5.26a) is equivalent to

* I
T* min JN =min ( (5.26b)

Tel TEL 1-- i

Therefore the complete procedure of obtaining T* is

n-l
T* min max min E u'(i) R(i)u(i) (5.27)

TEL x(O)eRn u(i)eRm i-OI~x~o I l=

subject to

x(i+l) - Fx(i) + Gu(i), x(O)=x(O)

T
F exp(AT), C ( G exp(As)ds)B

0

Note that when the system loses controllability, then for some TEL,

u(W)bO, or, 1/o(W) blows up. So for computational and plotting

purposes we may as well evaluate (5.26b) as

T w max c,(W) (5.28)
Tel

It is conjectured by many practitioners that T should be chosen

to maximize the determinant of We where W is the controllability

matrix in (5.7a) without any rational justification. We explain here

why this determinant of W-' is not a good measure of the quantitative

con trvtabiity ideas developed herein. Recall from rem-ark (5.5) above

that if R()..Im for all i,

•'- •(On)

and

W(O,n) .F-n %(O,n)(F')-n, F exp(AT)
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Therefore

det (C) det('(O,n))

n
H ai(W(O,n))
j=I

= (5.29)
n
U exp(-2Re[ X inT)

i= 1

under the assumption that A is diagonalizable with eigenvalues Xi.

Expression (5.29) clearly shows the inadequacy of the determinant

criteria, because for T, where the system almost loses

controllability, the denominator of (5.29) is fixed and o(W(O,n)) is

nearly zero. According to criteria developed herein, the system is

nearly uncontrollable. Yet det(We6) may be large if the remaining

singular values are large; thus the -almost uncontrollability"

v situation of the discretized system remains undetected with the

determinant criteria.

Examples:

Example 5.1. Consider a SISO continuous system

see. The o(W(O,2)s as a function of T is plotted W figure 5.1. which

rightly shows that at T-1.047 sec, the system loses controllability.

*To avoid aliasing effects ve must chooiie T smaller than the Nyq~aInt

i;ampIi ng rate, anid at; seen from the plot the optimum Tý,0.65 seconA.

Note also that near T-TNq the degree of coattollability is poor.

*Example 5.2. As another example consider the decoupld longitudinal

*dynamics of a mis,ý%le in flight condition 1:

*~ 5-14



(-1.4868 1.00)/ 0.
i't -xt) k -2 1 11 (t)

-149.93 0 (-281 .I

X " X

x2

where xl(t) - angle of attack in rad
x2(t) = perturbed pitch rate rad/sec.
u t) - elevator angle

A.

The poles are at -0.7434±ji12.22 with a damping ratio ý-0.061 and

a Nyquist sampling interval rate TNyq-0. 2 57sec. a.(W(0,2)) plot Ls

given in figure 2 which shows that the system loses controllab.lity at

Ti-kTNyq, k-1,2....IV

Although the optimal T* is lower than TNyq by an infinitesimal

amount, it is recommended '.hat a sampling time between 0.1 and 0.2

sec. be chosen from practical considerations.

0

N R MATRIX

1. *000+00

* q

I -el
0

0.00 .4k .00o 1.20 1.60

SAMPLING TIKE IN SECS

Figure 5.1. Sanpling Time Interval and Degree of Controllability
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Rt MATRIXI
"T 5.000+00

z

0.00 , . 1,20 2.60

SAMPL.-NG TIME TN SECS

9 Figure 5.2. Sampling Time Interval and Degree of Controllability for

an Air-to-Air Missile

5.6 Sampling Time Interval and the Obeerv•bilitZ of the Discretized

Systems

In this section we formulate an optimization problem for finding

an optimal sampling time interval T* from the ob~ervability viewpoint.

"The Approa.ch Is analigous to that in the pree;ding section. The cost

functional chosen for optimization is subjective and depends upon the

* application of th! discratLzed syatem; but the point we want to
emphastze is that this type of formulation yields an optimal unique T.

it is shown here how to formulate the problem from the consideration
of sensor senstlvttty and optimal use of sens-r measurement6.

The observabtlitty o the SD system

x(k•t) I Fx(k), x(O) unknown
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is concerned with the inference of the initial state x(0) from

n-observations, y(k), k=O,...n - I and depends upon the observability

matrix 0 in (7b).

Define

Yn - [Y'(0) : Y'(1): •••Y'0•-0]'

Then the estimate of x(O) based on n-observations is

x (O) IYn O#Yn

where 0# is the generalized inverse of the observability matrix 0. If

ratnk (O)nn, Yn lies in the range-space of 0 and x(0) can be eatimated

exactly and

x'(0):Yn - (0'b)-IO'Yn

When the system is unobservable, 0'0 is rank defi.cient and the

estimate is not perfect. The structure of the observability matrix 0

determines the "observabliity" of the system and the system continues

to remain observable as long as rank (0)-n. To embed the

observability problem in a quantitative framework, note that the

structure of this matrix also determiaes bow a given initial condition

x(0) (or equivalently any given state x(k)) is distributed in the

output sequence (y(k), kv0,...n-1}. Maximizing observability by

adjusting T implies in the sense of the L2 -norm that any initial

condition x(0) with energy IJx(0) 12 gives rise to maximum energy in

the output sequence.

In the extreme case when the system is completely unobservable,

the energy in the sequence (y(k), k-0,...n-l} is zero for any x(0).

There is another advantage of maximizing output energy. For a good

performance from the sensors it is desirable to maximize the energy,

because for a given x(O) (or (x(k)}) and unmeas.;rable corrupting

output noise, this is equivalent to maximizing signal to noise power

ratio and consequently best sensor performance is obtained. There is

another motivation that some sensors may be more efficient than oLhers

and less efficient sensors will need higher signal to noise ratio than
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the more efficient ones. These observations suggest a weighted

cost-functional (weighted energy in the output sequence), similar to

(5.17a),

n-I

J - E y'(i)R(i)y(i), R(i) = R'(i) > 0 (5.32)
i=O

where R(i) determines the relative importance of various sensors. We

should then maximize J. However (5.32) reduces to

J = x'(O)V(O,n)x(O) (5.33a)

where

n-i
V(0,n) Z (F')iC'R(i)C(F)i (5.33b)

i=o

may be called the "output-weighted observability Grammian."

The normalized energy is

J
= x' (O)x(O)

and the minimum possible normalized energy is

JN min J =min 0(V(O,n) (5.34)
x(0)cRn x(0)cRn X'(0)x(0)

where a(.), a(.) denote as usual the minimum and maximum singular

value respectively. Note that JN is bounded below and above as

0 O O(V(0,n) 4 JN 4o(V(O,n)

and when the system is unobservable a(V(O,n))-0. The minimum singular

value of V(O,n), a(V(O,n)) is a sensitive measure of unobservability,

because the system need not be completely unobservable for a((V)(0,n))

to be zero. If any subspace of Rn is unobservable an arbitrary x(O)

will have non-zero projection on this sub-space and c(V(O,n))wO. We
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therefore should choose T to maximize JN to take the system away from

unobservability as much as possible. The optimal T-T* should then be

chosen such that

=sup JN

T!I

with the constraint that T* should be less than the Nyquist sampling

rate.

Therefore, following the arguments of the previous section, we

should find an optimal sampling time T* from the observability

viewpoint by solving the following max-min problem:

n-i
T* max min x'(0)( E (F')iC'R(i)C(F)i)x(O)

T x(0)eR i-0

I lx(O) I17 1

Examples

'ft
Example 5.3. We consider again the example I of the previous sec-

tion with

the output matrix

H - (l 0)

The minimum singular value plot of V)'0,2) as a function of T is given

in figure 5.3ý Note the similarity with figure 1 and observe that the

sampling time at which the system loses controllability is also the

time at which the system loses observability. These happen at the

Nyquist sampling interval of 1.04719 seconds.

%

9..

--t ,l i



R MATRIX

.1.00

0.0 .4 .8 1.2 1.6

,• Figure 5.3: Sampling Time Interval an4 Degree of Observability

i Example 5.4. Consider the example 5.2 with angle of attack ar the

,•; output, i..e.

• .H 0 0l )

Figure 2. At T-0.257 sec. the observabi.lity is lost.

A

.J.

'00

. 5-20



R MATRIX

. .- 1. 1000+00

x

Z 0

0.0 .1.2 1.6

SAMPLING TIM INI SECS

Figure 5.4: Sampling Time Interval and Degrees of Observability of the

*•i .i" Air-to-Air Missilet1[6
5.7 Conclusions

In this paper we have described a ftamevork for determining a

unique optimal sampling time T. The solution T is given by a mini-max

problem when considered from the controllability viewpoint, and by

maxi-min problem when considered from an observability viewpoint. The

choice of cost-functionals as a basis of an optimization problem is

very much a subjective matter and depends upon the application of the

discretized system. But nevertheless, the framework developed in the
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CHAPTER 6

SIMULATION RESULTS

6.1 Introduction

The identification technique using CVA (Canonical Variate

Analysis) has been described in Chapter 2 and the robustness analysis

of the simplified MAC controller has been analyzed in Chapters 3 and

Chapter 4. These results are combined in this chapter as an Adaptive

MAC (AMAC) controller, and its performance will be demonstrated

through realistic simulations in deterministic as well as in

stochastic environments. The simulation runs have been designed to

emphasize the effect of data length, dither strength (SNR), and closed

loop identification capability of the CVA technique. It has also been

shown how AMAC behaves for StSO and MIHO plants.

The primary purpose of this ch&pter is to exhibit the strength of

the CVA technique as a closed-loop identifier and to demonstrate the

reliable adaptive control scheme AMAC which utilizes the robust MAC

technique. If the performance of the CVA technique degrades for some

reason i.e. the identified plant is not 'close' to the actual plant,

the robustness of MAC compensates for it in the sense that it enables

Sth plant to maintain the closed-loop stability and tollow the desired
trajectory. :

This chapter is orgnized 39 follows: The simulation models have

been selected from the previous project report on KAC OV

(APIAL-TR-80-3125). For the sake of completeness of this report, the

models and the various simulation parameters are described again in

Section 6.2. Simulation results under various scenarios are presented

in Section 6.3. Finally the *.imary and conclusions are given in

Section 6.4.

6-1



6.2 Simulation Model and Simulation Parameters

The simulation models have been selected from the previous report

on MAC (AFWAL-TR-80-3125]. The SISO and 1IO models are extracted

from a single hypothetical air-to-air missile model with asymmetric

aerodynamic properties. This model represents a simple, three-axis

attitude control problem in flight condition I with independent pitch

axis and coupled roll-yaw dynamics. In this flIght condition (Mach 2

at 20,000 ft. and weighing 239.5 Ib), this missile is flying at an

equilibrium pitch angle of 9', sideslip of 0* and roll argle of 00.

6.2.1 SISO Model

The SISO Model consists of the decoupled pitch axis dynamics with

2 states. The model in the continuous time domain is

S.

X(t) )-1.4868 1 x(t) + ) u(t) (6.1a)
* "x 2 (t) -149.93 0 /-28,.t

y(t) - (1 O)x(t) (6.1b)

The states are:

xl(t) - a•gle of attack.

x2(t) - perturbed pitch rate (rad/sec).

with input u(t) - elevator angle (rad) and output y(t) - angle of

att,*ck (rad). The open loop poles are at -0.7434±J12.222 with a

damping; rAtIo of 0.061 which shows that the pitch axis dynmic. are

j quite oscillatory.

p 4

The plant dynamics are discretized at a sampling rate of 10 lit

using the exponentisl transform (sample and zero order hold). The

resulting poles of the discrete time system are

0.31711!'J0.87252 (6.2)
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with a modulus of 0.92836. The pulse response and step response when

these are applied at t-0.4 seconds to this system are shown in Figure

6.1. The true poles in equation (6.2) will be subsequently compared

with those of the identified systems.

6.2.2 MIMO Model

The coupled roll-yaw dynaoics from the same air-to-air missile in

section 6.2.1 are used for the MIMO Model. It has four states, two

inputs and two outputs. The states are

x1(t) - sideship angle (rad)

x2(t) - perturbed roll rate (rad/sec)

x3 (t) - perturbed yaw rate (rad/sec)

x4 (t) - roll angle (tad)

with inputs

ui(t) - aileron angle (rad)

u2 (t) - rudder angle (rad)

and outputs

Syi(t) sideship angle (tad)

y2 (t) - roll angle (rad).

An early analysis of these dynamics indicated a very severe roll

instability. Since MAC casi work only for syste** with a finite

impulse response, roll angle and rate feedback vere added to the

i•tron cou-rid to add damping tý. the system (see the previous report,

page 125). With such compensation, the dynamics are
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-0.91237 0.15708 -1.0 0.015431\001S° °U°. °° °o
-1559.2 -4385.3 0 -4385.3 8770.6 0•x(,,) - 290.48 0 0 0 x(t) + 0 28t1.1) U(t)

0 1 0 0 0 0
(6.3a)

-r1 0 0 0

y(t)- 0 00 1 x(t) (6.3b)

The open-loop poles are at

* -4384.24,
-1.00040, -0.484-.j17.035. (6.3c)

As in the SISO case, the plant dynamics are discretized using an

"exponential transform for a sampling interval of 0.1 seconds. The

open-loop poles of the discretized system are:

0.00000654, 0.9047, -0.12609±JO.9444 (6.4)

The response of this system to a pulse and a step in aileron input is

Shovn in Figure 6.2. The corresponding responses to similar exctta-
tions in rudder input are shown in Figure 6.3. As in SISO case, these

*-. inputs are applied at t-O.4 seconds. In all the figures involving

HI40O plant %itmulations, the follovwng notations have been used:

on output plots:

A - stdeship angle.

B- roll angle.
%

* uton Input plots:

A - Ail~eron wksle,

t - rudder angle.

It to obviou% .ro= Figures 6.2 and 6.3 that the. first output to insen-

sitive to changes It the first Input And the second output is stal-

.arly related to the second Input.
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6.2.3 Simulation Parameters

In order to facilitate comparison between related plots, the

scales have been kept constant, if possible, within each series of

runs. Unless otherwise noted, the following conditions existed in the

sizaulat tons:

* The sample time was 0.1 seconds.

0 The controls were computed for the three blocks ending at
one, three and five steps in the future (for details of the
input blocking techniques see the previous report on FAC).

* The reference trajectory time constant was 0.1 seconds for
all outputs.

* No input constraints were imposed.

4 It was assumed that the plant model was completely unknown at

the beginning.

Therefore the missile was allowed to run open-loop for a while under

the effect of dither excitation and measurement noise. The plant was

identified at the end of this period which was then used by MAC as an

Internal model of the plant. The set points were then changed at the

end of this interval as follows:

For the SSO plant, angle of attack was set from 0 to 150.

For the HIMO plant, sidesllp was set from 0* tq lO' and the roll
set point remained at 0•.

. The output veights were all equal to I and .o inpuz weights
were used.

* The input excitation noite (dither) atd aesuar-'ent noise
were %thite GCAqtatn noise processes gnerated by the
subroutine CGGL from IMSL library.

U
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6.3 Simulation Under Various Scenarios

Under each condition, AMAC was applied to the SSO plant of

Section 6.2.1 and the MIMO plant of Section 6.2.2. These results are

exhibited separately.

6.3.1 MAC Applied to Perfectly Known Plants

Extensive simulation results under this condition, i.e. when the

plant model is perfectly known, have been reported in the previous

report on MAC [AFWAL-TR-80-3125]. Two of these results are reproduced

here for later comparison with AMAC performances. The control and the

*' output of the SISO plant under the same simulation parameters of

Section 6.2.3 when the set point is changed from 0' to 150 at 0.4

seconds is shown in Figure 6.4. Similar response for the MIMO plant

for a set point change at 7.0 seconds is shown in Figure 6.5.

6.3.2 AMAC Applied to Unknown Plants

The adaptive MkC was applied to the plants of Sections 6.2.1 and

6.2.2 and the results are shown in the subsequent figures. The

variance of the excitation signal (dither) was 0.1 and that of the

measurement noise was 0.05 so that the signal-to-noise ratio (SNR) was

6db. This ratio is considered to be realistic by many practicing

engineers. The dither was superimposed on the normal input obtained

frown MAC algorithm and the measurement noise was added to the actual

output cf the plant.

The SISO plant was identified at the end of every 7-second inter-

-- val and the optimal state otder was selected using the AIC criteria

(see Chapter 2 for detatis). As mentioned earlier, the plant was

ruoming open loop during the first interval and closed loop in the

sul'sequent intervals. The control and the output sequences are

plotted in Figure 6.6 - the vertical dotted lines in this and the sub-

sequent figures indicate the length of the intervals. The plant is

identified at the instants indicated by these dotted lines. This

figure clearly shows that under AMAC, the plant can track the
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reference input albeit at the expense of ride comfort (or oscillations

in the output). To see how VIA performs when combined with MAC, we

have compared the transfer function of the identified plant in the

first interval (i.e. open-loop identification) with the actual one in

Figure 6.7(a) and that from the 3rd interval (closed-loop iden-

tification) in Figure 6.7(b). The optimal state order and the iden-

tified poles during various intervals (see Figure 6.6) are found as

follows:

State Order Poles

Section 1 3 0.588, 0.3437±JO.8509

Section II 3 0.988, 0.3042±JO.8455

Section III 3 0.966, 0.2664-jO.8308

These n-las of the identified system can be compared with those of

actu*. which are at 0.31711±JO.87252.

The MIMO plant was identified every 20 seconds under similar con-

ditions, the plant being run open loop in the first interval. The

servo performance of AMAC under this run is shown in Figure 6.8. The

set point was changed at the 20th second. The optimal order and the

identified poles are:

State Order Poles i
Section I 3 0.8089,-0.12066±JO.9312

Section II 5 0.5888, 0.7479, 0.835,

-0. 1-58tj3.9308

Again theee identified poles may be compared with the actual ones in

equation (6.4). Each element of the Identified transfer function from

Section I (i.e., open-loop identification) is compared with the

corresponding element of the actual transfer function in Figure 6.9.

The comparison of the closed-loop identified system (i.e. from Section

11) is made in Figure 6.10. Note that the accuracy of the transfer

function identification is essentially the same for both the open-loop

6-7t
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and closed-loop identification which is a theoretical property of the

CVA identification method as discussed in Chapter 2.

6.3.3 Effect of Data Length and Dither Strength

The adaptation interval for the SISO plant was reduced from 7

seconds to 4 seconds and the AMAC was applied to the plant, keeping

other simulation parameters unchanged. But this time the identified

plant was too far away from the true plant and the inherent robustness

of MAC was not adequate to enable the plant to track the reference

"input. The closed-ioop was unstable as is shown in Figure 6.11. The

dither Ftrength was then raised to 1.0 thus making SNR 2b db. The

adaptation interval was fixed at 4 seconds. This time the quality of

,• the identified plant wae better and the plant under MAC was able to

track the reference input again albeit at a cost of much higher

oscillation. The resulting tracking behavior is shown in Figure 6.12.

The identified plant ia the oper-loop and closed-loop environments are

compared in Figure A.13. The optimal state orders for Sections I, II

and III were respectively 4, 3 and 6.

For the MIMO plant the data length was reduced from 200 to 100

and similar effect was observed - the closed loop was unstable as

1•- shown in Figure 6.14. As in the SISO case above SNR was raised to 26

db by increasing the dither strength to 1.0. As shown in Figure 6.15,

the tracking capability of AMAC was revived again. The identified

system from the closed loop operation is compared in Figure 6.16. The

optimal state order was 6 in both sections I and II.

The simulations in this section clearly indicate that the servo

quality of AMAC can be improved either by increasing data length or

dither strength.

6-

4,
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6.3.4 No Measurement Noise

In this set of runs, it was assumed that there was no measurement

noise and the dimension of the state-space was known apriori. The

intensity of the dither signal was taken to be 0.1.

The SISO plant is identified every 2.5 seconds, i.e. only 25 data

points were used in the identification algorithm. The result of

applying AMAC is shown in Figure 6.17 and the transfer function of the

identified plant is compared in Figure 6.18. The identified poles are

follows:

State Order Poles

Section T 2 0.2981±jO.8751

Section II 2 0.3161±J0.8629

Sectior li 2 0.3094±jO.8729

6nder similar conditions, AMAC was applied to MIMO plant for a

data length of 50, i.e. rhc identification scheme was invoked every 5

secendr. The result is shown in Figure 6.19. The transfer function

of the identified plant in closed loop operation (i.e., from segment

III) is compared in Figure 6.20. The identified poles from different

segments of the run are as foiiows:

State Order Poles

Section 1 4 0.907;-0.019, -0.145±j0.885

Sectibn ln 4 0.676, 0.912, -0.115tjO. 6 7

Seccion 1II 4 0.888tjO.037, -0.11•J09•3

These plots show that when ther- is no observation noise, the CVA

* technique can reliably identity the plant from a re.atively small data

length.
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6.3.5 Gust Noise Excitation

To demonstrate the effect of colored noise excitation on the

accuracy of the identified trasnfer function, a wind gust excitation

of the form described in MIL-F-8785 (Hoh et al, 1982) is used. This

is in contrast to the white noise input excitation used in the other

simulations of this chapter. The wind gust excitation was simulated

using a white noise excitation of unit variance into a transfer

function shown in Figure 6.21 along with the plant transfer function.

The gust excitation level was chosen so that the total variance of the

input excitation was the same as the white noise excitation used in

Figure 6.6 and 6.7.

The control and output sequences are shown in Figure 6.22. The

identified transfer functions corresponding to the time intervals I

and III are shown in Figures 6.23 with the use of open and closed loop

data respectively. In theory, the accuracy of the identified transfer

function at different frequencies is proportional to the ratio of the

input excitation power to the measurement noise power at the

frequency. Thus one would e!xpect to see a slightly greater accuracy

of the transfer function near the peak of the gust spectrum and

slightly lower accuracy at the frequencies with low power when

compared with Figure 6.7. This is consistent with the simulation run,

however the statistical variability is high in comparing

identification accuracy on only two data sets.

: An implicit input excitation where the excitation is not observed

was also considered. The result is of little use in transfer function

identification since only the magnitude of the trasnfer function is

obtainable and not the phase. In addition the accuracy of the

magnitude function is considerably worse than in the case of an

explicit input excitation. Thus the presence of wind gusts are of

very limited valu, in plant transfer identification unless the gust

excitations are accurately measured.

-f
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6.4 Conclusion

The simulations of this chapter have demonstrated the fact that

the combination of CVA and MAC results in a reliable adaptive control

scheme. This scheme can be used in an environment where the plant

model is completely unknown and/or slowly time varying. The satisfac-

tory performance of AMAC demonstrated that:

(i) CVA can identify a plant satisfactorily in an open loop as well

as in closed loop operation of the plant.

(ii) The optimal state-order stilection criteria (using AIC) is

extremely helpful when the state-space dimension of the true plant is

not known apriori. The comparison between the identified and the true

transfer function shows that this order selection technique works very

well in a low SNR environment.

(iii) The accuracy of the identified plant (and hence the performance

of AMAC) depends upon data length and SNR. However these factors can

be traded between one another - CVA performance can be maintained by

using shorter data length and larger SNR and vice versa.

(iv) MAC has excellent robustness properties. As a result the closed

loop performances can be maintained in many instances, even when the

quality of identification has been degraded.

(v) If there is no measurement noise, the plant can be identified

from a much smaller sample size compared to the situations having

measurement noise.

It is worth noting that the MAC control technique is based upon

the impulse response model of the plant and therefore MAC can be used

only for controlling stable plants. This causes no problem in a r
deterministic environment if the plant is a stable one. But in an

adaptive control scheme where the plant is reidentified frequently,
the identified plant may turn out to be unstable if the data length is

too short or the signal-to-noise ratio too low even if the true plant

6-11



is an asymptotically stable one. We indeed faced this problem in some

of the simulations of this chapter, but the effect was not dramati-

cally visible because the intervals of simulations were too short.

However this problem can be remedied by using Model Predictive Control

(MPC) technique - a newer version of MAC which can handle stable and

unstable systems with equal ease in the same framework.

i&
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CHRTER 7

CONCLUSIONS

The overall conclusion of this study is that MAC control design

technique can be used in situations where the plant model is not know

exactly and/or slowly Lime varying by incorporating a suitable on-line

parameter estimation technique in the existing MAC software. Many of

the available techniques for system identification suffer from the
fact that these can not identify the system in a closed-loop con-

¶ figuration. But the one developed in Part I of this report is based

on canonical variate analysis and has the same performances in both

open-loop and closed-loop configurations. The robustness analysis in

Part 2 gives the neighborhood of stability around the identified model

provided that the nominal MAC loop is stable for the identified plant.
Thus combining the results of Parts I and 2, adaptive MAC provides an

analytically sound and very useful control design technique in an

uncertain environment such as in the missile attitude control problem

in different flight conditions where the plant model drifts from one

flight condition to another. The problem of under sampling and over

sampling can be avoided by using the optimum selection technique deve-

loped in Part 2.

Specific conclusions of this study are:

(i) MAC software uses impulse response description of the plant

and therefore cannot be used if the plant is unstable to start with.

On the other hand if the plant is lightly damped, the impulse response

sequence contains a large number of terms and computational require-

ments become large. For these systems, it is recommended that the

* plant be made stable and/or damping be added to the dynamics of the

plant apriori by using constant gain output feedback and then MAC be

applied to the overall compensated plant. However if the overall
dynamics are made very fast using high gain, the sampling rate must be

high too in order to satisfy Nyquist'e sampling criteria. However If
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the plant model is not known exactly, gain should not be made

arbitrarily high because if the unmodelled dynamics have non-minimum

phase zeros, the overall combination will again be unstable.

(ii) The standard frequency domain robustness analysis can also

be applied to a one-step-ahead MAC control law and thus the MAC

robustness can be compared to that of other conventional control

design techniques under simillar situations. The robustness results

obtained in this report for aSO plants can be extended to MIMO plants

if the magnitude function is replaced by the operator norm of the

transfer function. Every nominally stable design guarantees the sta-

bility of a class of plants in the neighborhood of tbe nominal one,

and the boundary of this neighborhood has been identified in Part 2 of

this report. It is recommended that, before applying MAC to any real

world situation, the region of guaranteed stability be calculated and,

if unsatisfactory, enlarge by slowing down the trajectory time

constants and/or other parameters.

(iii) Any conventional on-line parameter identification tech-

nique can be embedded in the existing MAC software to generate the

internal model of the plant and the resulting control technique in an

* "Adaptive MAC". It is recommended that the identification technique

"based on canonical variate analysis developed in Part I of this

report be used for identifying and updating the system parameters. The

advantage of this technique is that it can identify the plant equally

well in open-loop and closed-loop configuration and it can give the

simultaneous confidence band on the transfer function for all frequen-

cies. In this technique the parameters are updated intermittantly

whereas in other conventional techniques this is done in every step.

Although the computational requirement is comparatively higher in this

technique, the quality of the estimate and computational reliability

of the solution justifies this additional burden.

(iv) Sampling interval is an important parameter in the HAC

design process, Usually sampling rate is selected satisfying the
* -constraints of Nyquist rate, t yet the designer is confronted with a
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iI
choice from infinitely many rates satisfying this constraint. The

optimum (possibly unique) sampling rate selection technique developed

in this report relieves the designer form this problem. The use of

this technique is not limited to MAC control design only - it can be

used in any situation where a sampling rate is to be selected.

(v) The simulation results in Chapter 6 demonstrate that the use

of MAC and a suitable system identification method such as CVA or

Maximum Likelihood provide a reliable adaptive control method if there

is sufficient input excitation or data length. The AMAC procedure is

demonstrated on tultiinput multioutput systems in closed loop

operation under MAC feedback control. The accuracy of the parameter

identification is shown to be the same in either open or closed loop

operation as is predicted by theory. The selection of state order

using the AIC procedure in the CVA method is shown to give accurate

model selection in the cases where state order is unknown. The

accuracy of the identified plant can be increased by increasing the

data length or the input excitation amplitude. The robustness of MAC

can accomodate a moderate uncertainty in the identified plant, but for

too large an error the closed loop system may become unstable.

(vi) The results of this study suggest a number of fruitful areas

for future research. The MAC approach uses the impulse response

representation of the plant dynamics which has the difficulty of being

unbounded for unstable systems and very long for very lightly damped

systems. Constant gain feedback is used in this study to obtain a

closed loop system that is well damped. A more direct approach is

that of Model Predictive Control (HPC) using a state space

representation of the system. Such a representation is in fact the

natural representation given in the CVA identification. The CVA

procedure can be easily extended to nonlinear systems of polynomial

form. This would greatly widen the areas of application of the AMAC.

Another area tor research is the use of the confidence intervals on

the identified transfer function and the robustness bounds on the MAC

controller to determine the required sample size or input excitation

to maintain stable closed loop operation.
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SUMMARY

A generalized reduced rank prediction problem, which is a generalization of a

number of multivariate analyses including the classical canonical correlation aalgysis, is

formulated as an explicit prediction problem: given two sets of random variables and an

integer p, find p linear combinations of the first set which best predict the second set as

Smessured in terms of a specified quadratic .orm in the prediction error. Use of a general-

ization of the singular value decompsition reduces this problem to a simple form with an

explicit geometric interpretation, includes the case of singular covariance matrices, is the

preferred numerical procedure for actual computation, and gives a complete characteriza-

%ion of nonuniqueness in the case of multiple solutions. The optimal solution is shown to

be a formal applicatioa of classica canonical correlation anal* to a "peudd' covariance

matrix. Special cases include the classical canonical correlation analysis, the standard as

iwell as a generalized principal component analys.3, the optimal selection of instrumental

variables, and reduced rank regression.

- K Partial suppozn for the research was provided by Air Force Wright Aeronautical

Laboratories under contract F336L5.82-C-360D, Basic Research ou Adaptive Model Algo-

rithmifc Control.

AMS 1980 subject classification. Primary 62110, secondary 62H25.

Key words and phrases. Canonical variables, Canonical correlations, srumental

variables, Linear predictors, Quadratic prediction error, Reduced rank regremson, Singu-

lar covariance maitrix. Singular value decomposition, Principal component analysis.

Submitted to.Annats of Stauistics



1. Introducdon

In recent years there has been considerable interest in unixying concepts in multivari-

ate analysis and research into a number of generalizations (Izenman, 1975; Muller, 1982;

Rao, 1979). The approach taken in this paper is to formulate a single geuneralized predic-

tion problem which includes a number of multivariate analysis procedures such as pinci-

pal component, canonical correlation, reduced and full rank regression, instrumental vari-

ables, as well as some generalizations of these. Some of these multivariate analysis pro.

cedures are not traditionally formulated or considered as prediction problems, and this

extends the range of useful applications for these methods (Yohai and Garcia Ben, 1980).

The prediction problem is very naturally considered as a generalized canonical variate

analysis.

A primary objective of this paper is to give a complete characterization of the solu-

tions of the generalized prediction problem in the cases of multiple solutions and/or singu-

tar covariance matrices. Such multiple solutions may arise in the reduced rank case with

repeated singular values or, in terms of the traditional formulation, with repeated general-

ized eigenvalues. Multiple solutions have received little attention and seem not to have

been characterized from the geometric point of view in terms of subspaces as is given in

this paper. The singular case has also received little attention. This is probably due to the

rather considerable complexity in the derivation and description of procedures such as

4 canoniczl correuatioa analysis.

The classical approach to reduced rank or rank constrained problems such as pnnci-

pal component and canonical variate analyses has been the use of canonical representa-

tios which are obtained by the solution of related generalized eigenvalue-vector probtems

(HoteUing, 1936). The canonical variables have a particularly simple covariance structure

although the means of obtain them are often quite complicated involving the solution
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of a constrained maximization problem by differentiation leading to the generalized cigen.

problem. Mist treatments do not prove that the conditiou, sufficient for the existence of

such a mraximum are satisfied as noted by Stuart (1982). Rarely is there any discussion of

the mnultiplicity of solutions, an exception being 'Yohai and Garcia Ben (1980). The case

of singular covariance matrices is not included in these approaches and has received very

little attention in the literature (see Khatri, 1976).

"In recen. years, the simple structure of the covariance matrix of the canonical vari-

ables has been expressed in terms of a singular value decomposition (SVD) of appropriate

quantities depending upon the particular problem such as principal components or canom-

cal variates. In a few discussions, the derivations were considerably simplified by the use

of the singular value decomposition as compared with the classical eigenproblem (Good,

1969; Mandel, 1982; Rao, 1979; Stuart, 1982). While this greatly simplifies the derivation

and interpretation, a unified treatment of the various reduced rank problems is not avail-

able.

The approach of this paper using a generAlization of the singular value decomposi-

tion includes simply the cases of multiple solutions and singular covariance matrices. This

approach involves concepts and methods from the singular value decomposition which in

recent years has become a standard toot of linear a4ebra for the investigation of reduced

," rank and illconditioned problems from both an analytical as well as a computational point

of view (Golub, 1969; Lawsoa and Hanson, 1974;). This approuh focuses immediately

upon the central algebraic and geometric properties of the problem and gives the general-

ized canonical vatiables directly. The generalized singular value decomposition reduces

the optimal prediction problem to a Ample form which is directly and easily solved using

elementary properties of orthonoImal matrices. This avoids the need to solve a con-

suained maximiztion problem by differentiation using Lagrae multiplien which is the

A-4
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traditional approach to canonical variate analysis.

The generalized siagular value decomposition provides a unification on several levels.

A single mathematical framework using the generalized singular value decomposition

solves a single generalized problem that can be spetialized to the various reduced rank

prediction problems. This unified treatment gives the complete multiplicity of solutions

for cases with repeated singular values and simultaneously includes the case of a singular

covariance matrix largely missing in the literature. Also there is unification using the gen-

eralized singular value decomposition in the derivation of the proof, the mathematical

statement of the results, the geometric irterpretation of the prediction problem and its

solution, and the computation of the solution using modem numerical methods that are

numerically accurate and stable. This gives a considerable unification of the teaching,

understanding, interpretation, and application of these methods. The diversity and com-

plex.ity of the present literature makes the learning and understanding of such methods as

canonical correlation analysis difficult for many potential users, and is consdered by some

to be largely responsible for its relative neglect in applications.

2. A Genaaulixud Prldico Ptblm

Consider two sets of zero mean random variables Xr (x ... x.f and

yr (y ,..,.,)' with a joint covaiance matrix of (XrTy,)T given by

whe-e X and are possibly singular. In this paper, the following constrained predic-

tion problem is considered: for given p, find a p-dimensional vector Z - H,'X of linear

combinations of X such that the optimal prediction Y,, of Y based upon Z minimiz the
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general quadrtic prediction eror measure

II Y4•11 I E{(Y--,fA(Y-,) (22)

where A is an arbitrary nonnegative definite symmetric matrix of rank W, and t denotes

the pseudoinverse, ie. the inverse of the full rank part of A. Let L satisfy LALr = 1

where L is full rank with dimension W Xn, then it will be convenient to express Al = LTL.

From the eigenvector decomposition of a matrix, the rows of L span the same subspace as

the eigenvectors of A with nonzero eigenvalues. Such an L will occur naturally in the

generalized singular value decomposition. Although the use of the inverse or pseudoin-

verse in the definition of the prediction problem may appear awkward, it will lead to con-

siderable simplicity in formulating the mathematical problem to be solved and in the

geometrical and statistical interpretation of the resulting solution. T1he prediction problem

(2.2) is considered in the case that A is full rank by Izenman (1975) and Rao (1979). Lari-

more (1983) extends the prediction problem to the case of time series analysis of Markov

processes of constrained Markov (state) order p.

In the paper, the geometrical interpretation will play an important part. A linear

vector space V of random variables generated by a set S of random variables is defined as

the set V of all random variables that are tinear combinations of S. In the aquel, several

inner products <,.v >r - Earrv for u,vE V will be defined for various positive stmidefin-

ite symmetric matrices r. Two randcm variables u and v are ortohqooaa with respect to

the inner product <.-->r. if <t,v>r - 0, and a set of random variables a .... are

orthonormal if they are orthogonul and in addition <u,.A >r - 1. Then all of the usual

properties of imner product qces apply to uch a sace of random variables such as sub

c,,p , tac k of a 3uza. and inar independence of vectors.
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Consider the case where ,. is full rank. Then for an arbitrary p-vector Z = HX of

linearly independent combinations of X where p S m so HI. is rank p ,the optimal esti-

mate f, of Y given Z is

p and the prediction error is

A IIs -,il - arAt, - srAt%, H.r(H I.. HHYr.-H.X,, (2.4)

Now H. does not uniquely specify Z in terms of estimating Y since from inspection of

(2.3) any nonsingular transformation of Z will leave l invariant. An orthonormalization

of Z will give an equivalent Z =JX with

where 1 is the p xp identity and whe the last equality is satisfied if Rank (1') 2 p.

In the singular caw where Raxk(I.)< p, then by an orthonormalization of %. a

new set of random variabte Z = AZ - AJpX = J'X of lower dimensioa F can be chosen

with a full rank covaiance matrix equal to the identity. Fot this new orthoaormalized set

of random variables, dropping the bar notation we have precisely (24• Note that by

replacing H, by JO, the inverses in (23) and (2.4) are then also well defined. We may

thus in any case introduce the constraint (25) oo J, without loss of generality. The

optimum prediction problem (2.2) can thus be stated m aticly s3 choosing a J, to

miniMize

11 V-4,1 tAl,, - WAt1,, J~rJpE, (216)

subject to the constraint
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This problem is of great practical interest. The classical canonical correlations and

varlates analysiswi be shown to be equivalent to mlinhifing- (22) with A Z ,,. The

principal component analysis problem is equivalent to Y = X so 2. = Y• =1ý and in

addition setting A = I . More general weightings are afforded by other choices of A

which can reflect a cost of prediction error of practical value such as dollars or a second

order approximation to a nonlinear cost function. The particular weighting A used in a

given problem can make a considerable difference in the solution, which suggests that the

claiscal canonical correlation analysis in some cases does not give the most appropriate

choice of A. The generalized canonical variate analysis provides a unified framework for

canonical correlation analysis and principal component analysis as well as more general

prediction problems.

3. A GENERALIZED SINGULAR VALUE DECOMOVSTON

A very intuitive approach to finding the canonical decomposition is through one par.

ticular generalization of the singular value decomposition. The usual singular value

"decomposition is given by the following (Lawson and Hanwo, p. 20-1, 1974).

Theorem 1. If A is a real m xn matrix of rank r, then there exist orthonormal

matricm B(n xm) and C(a xs) such that

where Dag denotes a - xi diagonal matrix with noanegative elemens in decending

order.

'A-8
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In generalbing this, let P be a nonnegative definite symmetric matrix of rank r

Then we define a matrix J to be P-oru/wnormai (rowwise) when JPjT = l,. Note that

this definition includes the requirement that the dimension of J is RankP XDimP with i

full rank. This can all be conveniently stated simply as jpj" = p,.Ap so that the dimen-

sion and ranks of P and J do not have to be explicitly stated. Also throughout the

paper, D = D*a(d 11, .- ,dd, "- ) will denote a general rectangular matrix with all ele-

ments zero except for elements d4 on the main diagonal. Then the (R S )-singudar value

deconVpsirion is given by the following theorem.

Theorem 2. Let R and S be nonnegative definite symmetric matrices of order m and

n and ranks ii and i respectively, and let A be a m xi matrix. Then there exist transfor-

mations J and L such that

* JAT D Diag(-y >..-.y, > 0,...,0) j, j r , Lr A (3.2)

Thus the transformations J and L are R- and S-orthonormal respectively and in addition

satisfy the following:

(i) For distinct singular values -y's, the row vectors of J and L ase unique except for a

sip change.

(ii) For repeated singular values -yjs, the rows of J corresponding to a given repeated

singular value must span a fixed subspace, and similarly for L.

(W") Any transfoations J and L satisfying the decomposition (32) axe related to a par-II
ticutar solution J..L. in t of a block diagonal orthonormal matrix of the form

J - Diag (P .... P•P.P)J. . L = Diag(P 1. P,.P,)L. where the blocks Pj are arbitrary

orthocormal matrices which for j-.A have dimension k)xtk, corresponding to the j-th

nonzero value of - that repeats kj times and where P. and P, are orthonormal matrices of

dimension Ran(R)- r and R, ws(S)- r respectively. Thus for any J and L. the rows
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corresponding to the same singular value arc orthonormal linear combinations of the

corresponding rows of J, and L. .

Proof: Existence: Let B and C be any R- and S-orthonormal matrices respectively

so that BROT = lw and CSCr = Ia. Now consider the singular value decomposition

of Theorem 1 applied to BACT , so iBACrC = D with iB = I = elT C. Then J = TB

and L = jTC satisfy (32).

Uniqueness: To determine all solutions, let J,/L, and D be another solution satisfy-

ing (3.2). Then irid =It.. = jrjPr implies that the raw vectors ofiJ and Jspan the

full rank subspace of R . Thus there exists a nonsingular matrix F such that I = FJ and

similarly there exists a nonsingular matrix G with/E = GL. From the decomposition (32),

'Aixu= JR!- FJRJTFr = FFT and similarly GGT= l,,,, so that F and G are

orthonormal matrices. Also 5r =FDDTFT , and from the uniqueness of the eigen-

values ard eigenvectors of a symmetric matrix it follows that DDT =56r so D = D and

S *. that F is block diagonal with blocks corresponding to the repeated singular values. A simi-

lar result holds for G by considering D . Now D = =FDGr , so using the block

diagonal forms of D, F, and G with diagonal blocks D,, F,, and 0, respectively, we have

"for every block i with 0 -0 that -,I = F,,,IGfr so FGr =I = F5FT which implies

Fj - G, since they are both square matrices which proves the Theorem.

One generalization of the singular value dewnmpositioo proposd by Van Loan (1976)

is womewhat different definng Poonboorwamity column wise and using the inverne of the

transformation J so that the decomposition satisfies the following: JrRI- j a&

LtSL - ,AOA JTrAL DiqS(y1 > ... > 1g,0... .0) .1I we make the identification

7 "j-r , Lr , and R-R , thenJ , L, R. S and D satisfy the generalized singular

value decomposition (32), From a statistical point of view, this decomposition is much

A-in
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more intuitive as is seen in the next section, and treatment of dhe case of singular covari-

ance matrices would be considerably more involved using the Van Loan decomposition.

4. GENERALID CANONICAL VARIATE ANALYSIS

Now consider the (1 ,,A)-singular value decomposition of 2, given as

Jy, Lr = - Diag (y ......y,,O,...,0) , jJTr = 1, , LALr =Ij (4.1)

where ii =Rank(1,.) and i =Rank(A). This decomposition has the very intuitive

interpretation of a new basis defined by the generalized canonical variables or variates

U =JX , V =LY (42)

of dimensions ii and W respectively for which:

(i) = I, so that the components of U are uncorrelated with variance unity.

(ii) X. = Di8(' ..... 1y,0.... .0) , so that the components of U and V are uncorre-

lated except for the i-th pairs with cov(ujv 4) I • The1 •,s will be called canonical

covaiw~rAes

(iii) the norm of the prediction error

1 1 ' E{(Y-),)rL T L(Y--,)} Y E{(V-4,)' (V-l()) V-. II (4-3)

is a sum of squares in V-0, where 0, dI, and the inner product induced by the

transformatio L is <Y1 ,Y2•> E{¥YLrLY1 ) <V1 ,V2>j, the inner product with respect

to the identity.

(iv) the projection of ft- prediction eror Y-Y, on the full rank subspace of A. i.z. wherc

the prediction errot has aonzaro weighting, as
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AAt(y~fs) _ ALT L(Y4f)_ATVV) (4.4)

which gives the inverse frmm t V onto the full tank subspace of A.

As in the discussimo following (2.5), U contains the par of X involving the full rank

pan of I.. Thus without lon of generality X may be •preed as X = KU. In termsof

the canonical variables U , the p linear combinations Z are Z = .,X = JKU = M,U

where we define the p X matri M = JK . Usng the constraint (2.5) givesthe

equivalent cosraint

MAT I= Hz..u = !,(4.5)

so that M. has orthonormal rows. Furthermore incie Z = JpX MpU MPJX, we can

substitute into (2.6) the relationships J, = MJ and At =L TL. Use of the generalized

singar value decomposition (41) then gives the sim re n

II Y-1•,w B v-I, ••fl, -trAI' - " M, "DD•M> (4.6)

* Th~Ius the generalized singular value decomposition (23) reduces the ognal" problem of

minimaizing (2-6) subjwc to the constraint (2.7) to the problem of finding a p xg matrix M.

with orthoniotmal tam m-urnimins I.WrMDTTwih

,:To solve this maximilation, proem requires only the elementary properties of otthono.

Mral matrices as ed in the follovAnI 'emma.

Lemmas 1. LAthbe integerp :S dibet k etabe the cobwins of the p i matrix

Mpwith orthaotomal rows. and supps the Zei diaonal matrix D bs

D=DNq(NI ...... yq,>yf. 1  I"p 9&>V4*) for & repeated

*valueseualt V, so for -I. unique webhaveq9+1 - p - q +& +1-. LeMI - IuIN).

M5 =Iwqi.. . ~. 1 LM ~ ... aJ.Thea TrM,,DDrM,,anhmui n
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only if all of the following hold:

M'M = , Mo' M =0 ,MF=0 (4.7)

&A

Proof: By Gram-&Shmidt orthnormalization, the a Xp matrix MUr may be extended

I•'] •to a square Ri xii matrix [M,,rNr] with ortliononnal columns. -mus,

M 4.

0 A

where the second equality foilows since a right inves is also a left invem. In particular,

denoting the i-th column of M. and N by .uand N respectively, we have urm +afj =1

so that MN1 z 1. Furthermore

,Mqrmq + IWMAAr ~tpmz U f 49)

Using 4ý% I implie the inequalty

,,(U,•,p ', ., Jk.-1,2 (4.10)

By Co"&tint 4r4 at as arbirary puitivo numben whose sum is p, it is easily ahwwow

that the equalty is afhieved if ad only if d -I ad =0 and 4ws a 0ot

9 +4k < a :.i.

(Only if). Now if we puiitiooN simila to that Of M soN =[ 0 N' Ntm). then

when the maximum as achieved we must have from (48)

*q A-ilrm
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whi implies the Mr M = 1, and MqrMh - 0.

(If). Suppome that (4.7) is tue. Then from MW'- =1q, M'* =0 and (49),

nrýN =pq (4.12)

Then using (4-10),

4Tr(M,'M,)DD T  yfi'N J,2+.Y+rk~ I= (4.13)
jul- 1,-1 1-1

so that the maximum is achieved which proves the Lemma.

S. Optimal Prtdktloa wia Comam~d Canonical VarabiMe

Using the above reduction to canonical variables and previous Lemma, solutions to

"O minimizing the predittion error (22) are characterzed simply in terms of the generalized

canonical variables from the generalized singuiar value decomposion (4.1). The solution

is given by esenaially choosing Z as the first p canonical variables, althou: for repeated

si l values it is somewhat more involved in that any p-q dimensionl subpaqc

correspoading to the repeated singular value may be chosen. The uniquenes of the ge-

erujied singular value detompsitioa exacsy ctly acterize the nocunqueness of the

canonical variables and the solution to the optimal prediction problem (22). ThIs is pre-

cisely stated in the following thmorem.

Theorem 3: Consider the problem of choosing p ntuiar combinations Z = HX of X

for piedicting Y sujc thait

: U ,Y-Y U £(Y-Y,_,)' A'(Y-iID (5.1)
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is minimized where X,. and A are possibly singular positive semidefinite symmetric

matrices with ranks R and i respectively. Then existence and uniqueness are given as

follows:

(i) Existence: Z = HpX is a solution minimizing (5.1) if and only if there exist

transformations J and L satisfying the (2z,A)-generalized singular value decomposition

JY. ,JT = ii, LL = I , r%,L = Diag(-fl a.. -,O, ) (5.2)

such that

(a) Z = HX spans the first p of the canonical predictors U JX, i.e. we have

Z = QU,, =Q[I., O]U = Q[Ip OJIX for some nonsingular Q. Thus HP = Q[I, 011 , so the

rows of HP are linearly independent linear combinations of the first p rows of J. In addi-

tion we have:

(b) the prediction error is reduced in the span of the corresponding first p canonical

variables V, and the corresponding subspace of Y is the span of the random variables con-

sisting of linear combinations of 1. given by the first p rows of L.

(c) there is no reduction in the prediction error in the span of the last W-p variables of

V. and the corresponding subspace of Y is the span of the random variables consisting of

linear combinations of Y given by the last n-p rows of L.

(ii) Uniqueness:

(a) If yp+l > "y, then the solution ia (i) is essentially unique, i.e. the subspaces in (a), (b),

and (c) are unique and given by any particular representation (52).

(b) If -"p = -yp+l with k equal singular values yq+1 .... =" -- -. -y, , then the

subspaces in (i) are not unique. The subspace span by Z contains tht first q canonical

predictors Uq := [17 "'/X and in addition contains an arbitrary selection of p-q linear

combinations of the canonical variables uq+1, • g ••,+k. In partiuhr, a'i, has the form
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Hp =Q~oc0 C-

where C_,- is (p-q)xk with orthonormal rows so C,_,CT.• = I-, andui is an arbitrary

nonsingular matrix.

(iii) The minimum value is

At , (5.4)

Proof: (i) Existence - (only if). Suppose Z HpX is given which minimizes (5.1),

" -4. then we seek a generalized singular decomposition satisfying (52) and (iXa). To simplify

the derivation we work with the equivalent Z = JX as in (2.6) subject to the constraint

(2.7). Now consider a fixed decomposition (5.2) with J and L given with corresponding

canonical variables U and V. From the discussion following (4.4), there exists a

Al, - JK satistying (4.5) and minimizing (4.6). We use M. to costruct J and L satisfy-

ing (52) and (iXa).

As in Lemma 1. suppose that M. =[M9 MA 0] minimizes the prediction error.

From the nonuniqueness of the generalized singular value decomposition, the problem is

to select a new basis from amon the columns of M1 which is full rank and use this in the

constrution. is simpy accomplished by considering the generalized singular value

decomposition of the matrix M., with respect to the identity matrices given by

FM'Gr =D, FFr z,,I GGr -Ir. From th orthogoality o M, we have , =FFT

FMMrFr DDr so that D 1ip 01. Partitioning the various matrices in this singular

value cdecompositiou corresponding to the partitioting of M,, [l'I Mk5 01 gives

". [•FMG' FMkG' 01 [1, 0). A reordering of column of F gives of the generalized

•* singular value decomposition of the p (A matrix M" with respect to the identity matrices
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as

BMkCT= 0  , 8 T= , CCT -I (5-5)

where k a p-q. The rank of Mk is thus obviously p-q. Let B,,_, = [,Ir. 01 and

SCIP_= [I. OJC be the first p-q rows of B and C respectively.

Now consider the transformation on the variables Z to Z

q'= 'Z (5.6)

In the sequel, we will need the property that BpqM4 =0 which is the case if and only if

,•Br•.qt,.• =0 since C,,, is full rank. This indeed follows from Lewma I since

...M TrB;c.q = M'rTr T jji~ q O)C = MraTTBMkCrC = ,T "MM = 0 (5.7)
,2O

7 Thus the mauix of (5.6) is orthonormal, and using Z =MU =MpJX it follows that

i Mq 0] qI I)AAT 1u'JJX

I. .. rl0-
::':• 1•[M, Mk olu--- U=,. o 'crc = c,,

,,[I,, V=[, Oolp OU u-, (5.8)

where J 1[•l.CJ..I. From Theorem 2 (Wii), the transformations J and

L Diag[lIC j._k..) L are ;ust an alternate set of matrices satisfying the generalized

singular value decomposition (52). Thus (iXa) is satisfied since Z in (5.6) is given by a

nonsingular linear transformation of Z which is by construction LI.

A
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(iXif). Suppose 1, Q[Jp 011, with J and L satisfying (52). Then by Lemma 1,

with M, = [1, 01, (4.6) is minimized so that Z = HX is a solution minimizing (53.1).

To show (i)(b) ind (c), consider the prediction error V-V in V where

V X. 1[ip (IfJ,[Ip 0' as in (2.3). T'he reduction in prediction error is

I, _= I 1 I + D'[I, 0f[i, 0.o = ,8[•.... Y20. .... 0] (5.9)

which proves (b) and (c).

(ii) Uniqueness: SulA.rse that there are two solutions satisfying (52) which minimize

the prediction error (5.1). Then by the uniqueness of the generalized singular value

decomposition from Theorem 2, the respective J and L matrices are related by a block

diagonal orthonormal matrix. If -yP is unique, then so is the subipace span by the rows of

J. which proves (iiXa). If ,, is not unique, then a choice of a different generalized

singular value decompusition relates to a different choice of basis for the k-dimensional

basis corresponding to the singular value -I.. Thus there is an arbitrary choice of a p-q

dimensional subspace ftom the rows q .... .q +k of J giving the canonical variables

"U#+' ..... The matrix C,., = [,.., OC is comstructed in (5.5) which proves (iiXb).

The minimum value is given by setting M, (I,.O) in (4.6) so 4,M, , D ='.•+. .,

This proves the theorem.

6. Muwvaiza• Rank P--kt/o

The Theorem 3 includes a number of pecial se that arise in the analysis of mul-

tivariate data. A particular solution to the general prediction problem (22) in the cae of

A nonsingular is given by lzenman (1975) and Rao (199), although the solution is not

unique if the generalized singular values are not distinct. The clasical canonical
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correlation analysis problem is obtained if we set A -Z,, , since then the normalization

LlyLT I=,,t implies that the variables V = LY are orthononmal and hence is a

correlation matrix. Infact the solution (52) then reduces to the canonical relationships '

X ;=1j ,I -=-Ix , Xw =Diag(y .... ,y,,O, .... 0) which are a central aspect of

canonical correlation analysis (see e.g. Rao, 1973, Sec. 8f 2(iv)). If A = I, the solution is

different from canonical correlation analysis unless I., = I .

The principal component analysis problem is given by X = Y =nd A = I , so that the
norm is 11 -x1,1= E{(xX-) 1 (x-x2 )). A generalization of principal component analys

is obtained by setting Y = X so Y = Y ,, = X., and using an arbitrary positive definite

symmetric weighting A so the norm to be minimized is

I1 X-4,l 2 E{(X_.)r-A-1 (X-_t)}. A different generalization, principal componentA-|

analysis of instrumental variables, is discussed in Rao (1965). The problem is equivalent

to setting A =I so the prediction error norm is 11 Y-4, E(l(Y4 3)f(Y 4,)). The

canonical variables U are called the principal components of the iastnimental variables X

In the above particular cases, the derivation and proofs in the cited references all

assume that the matrices Y. and A (i.e. Y., or 1) are nonsingular. The only discussion of

the singular case seems to be Khatri (1976) for the canonical correlation analysis which is

much more complicated than the present approach.

The definition and properties of the &.cieralized singular value decomposition clearly

express the fundamental properties of these multivariate prediction problems. Mathemati-

cally, geometrically and statistically the fundamental relationship is the selection of the

canonical vaiiables U and V by selecting the transformations J and L of the random vari-

ables X and Y. The fundamental geometrical properties of these transformations are that

A1



J and L are ortizonormal with respect to the matrices 2., and A while simultaneously they

are orthonormal with respect to 1,, except in corresponding pairs. This is concisely stated

mathematically by the generalized singular value decompostion which includes the gen-

eral case of singular matrices. These mathematical orthonormality relationships have

immediate and direct statistical interpretation in terms of the Identity covarnances of U

and V , the mutual zero correlation between U and V except in pairs, and the sum of

squares property of the prediction error V-0? with the addition of more predictor vari-

ables from U. The different multivariate prediction problems correspond only to a dif-

fert• selection of the random variables X and Y and the matrix A involved in the weight-

mg of the prediction error.

V 7. Coputaluzal Aspects

Modem computer algorithms for canonical correlation analysis use a standard singu-

lar value decomposition to compute the generalized singulaz value decomposition (2.3)

with A =Xyby fan finding square root factors of 1. and A , and then doing a standard

singular value decomposition on A , ,(A-1 )=QsRr where r n! R andS

is diagonal. Then the generalized singular value eomoion(2.3) is given by

J - QTY a, L = RrTA-I and D - S . Thus the joint orthonormalization of X and Y in

the norms T., and A to give the canonical covariance structure D is very naturally vievied

as a generalized singular value decomposition othU in terms of the simple reduction dis,-

cussed in Section 2 as well as the actual computational algorithmL This can be deter-

mined computationally using a standard singular value decomposition which is numerically

*.. very accurate and stable a compared with the earlier eagenvalue computational methods

(Biorek and Golub, 1973}. An open topic is the investigation of numerical methods that

directly compute the generalized SVD rather than t•nsforming the problem to the

A11

I A-20



standard SVD. Such a direct approach may have better overall numerical accuracy.

A second problem is specified in terms of the observed data given as N repeated

observations (X1, ... ,XN) = C and (Y. .y... Y) = D on X and Y respectively. The usual

sample covariances are computed as CCT CDr and X. = DDr which

mathematically are used in the generalized singular value decomposition. Numerically,

however, the formation of these products defining the sample covariances results in a

halving of the numerical precision of the computation. In the case of given data, Bjorck

and Golub (1973) give computational procedures that avoid these squaring operations and

operate directly on the observed data.

Another computational aspect that may have a considerable effect upon statistical

computing in the future is parallel computers. A very efficient algorithm for computing

the singular value decomposition has been recently devised for highly parallel systolic

arrays by Brent and Luk (1985). Such an n Xi square array of processors requires com-

munication between only the nearest neighbor processors in synchrony with the processor

computational cycle. The computation of a singular value decomposition of a a xx matrix

using a a Xn array of processors requires only order x proces cycles as compared to

order n cubed for a serial computer with a single processor. Such parallel procesorn and

algorithms could make routine the analysis of very large sets of variables such as arise

uaturally in multivariate time series (Larimore, 1983).

From remarks above, it is obvious that the optimal solution to minimizing the qua-

dratic prediction error measure (22) has exactly the same structure as solving the "pseudco

canonical correlation analysis problem using singular value decomposition methods with

Y-Y in (1.1) replaced by A. Although the matrix (1.1) is no longer a covariance matf- . a

formal application of canonical correlation analysis indeed gives the optimal solution to

.minimizng (22). Thus a sufficieutly general computational zlgorithm can be devised



which will solve all of the particular multivariate problems described above. Available

algorithms for canonical correlation analysis may not be sufficiently general if for example

they assume that the matrix (2.1) with Y., replaced by A is a covariance matrix or that the

canonical covariances are correlation coefficients ((•) < 1).
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SYSTE IDEVTIFICATI0N, REDUCED-ORD.•R FILTERIýG
ANT) ODELING VIA CANONICAL VARIATE ANALYSIS

Wallace E. Larimore
1

Scientific Systems, Inc.
Cambridge, KA 02140

ABSTRACT stochastic minimal realization algorithm similar to
the algorithm of Rv and Kalman (1963). Later, Akaike

" Very general reduced order filtering and modeling (1974a) gave an abstract (coordinate free) descrip-
problems are phased in terms of choosing a state based tion of the projection of the future of a process on

*" upon past information to optimally predict the future the past and called it the predictor space. The
as measured by a quadratic prediction error criterion, canonical variate realization provides a particular
The canonical variate method is extended to approxi- basis for the predictor space. Ue used the concept
2ately solve this problm and give onearoptlmal reduced- of the predictor space to characterize any minimal
order state so•ae model. The approach is related realization for a discrete time Markov process as a
to the Hankel norm approximation method. The particular choice of basis for the predictor space.
central step in the computation involves a singular The predictor space concept has been widely usd in

S " value decomposition which is numerically very stochastic realization theory (Clary (1977).
accurate and stable. An application to reduced-order Fujishie et al. (1975). Picci (1976)).
modeling of transfer functions for stream flow

dynamics is given. Fujishe olng al. (1975) ad:resses the reduced
order modeling problem using the predictor space, but

I. Introduction they do not use the canonical vartace structure for
model reduction. The criterion they define is the

"h Many complex random phenomena are modeled as sum square prediction error of all output components
hih order of infinite order Markov processes. Often. for all the future which is & special case of thehowever, most of the behavior oi interest can be prediction error criterion discussed in Section 3.
adequately approximated by a Mtarkov process model ,-f Their procedure requires an initial scate-space model;
much lower order. Many of the modeling, control, and owver, t results tn needing only to solve for
filtering methods depend upon a Markov or state-space eiheowector, of e sl trs c iatr d oltose dimsneion is

structure. Even implementation of the general Witner the original system state order - a very small amount
lilter theory often requires use of finite-order state of computation compared with most reduced order
"devices. Thus, it ia frequently necessary to reduce modeling schemes. A very interesting but brief.. : a cop-lex process to a limited number of states at discussion of canonical variate and predictor space
some point In the analysis or itplementation. In methods and their relation to filtering problems is
this paprer, the problem of modeling or filtering with given by Kaileth (1974). He talks about an 4pproxi-

i a restric:ed order state-space is addressad with empha- mation problem and the possible usefulness of
sis on hcv best to detcrmine approximate models or canon~cal varistea. but he does not explicitly discuss
* fiters when the slate order is restricted. a reduced-ard4r filtering problem.

. Ther* heve bten a number of papers dealing with The •minl'l aplictiog field of past and future is
reduced-ordur 3odeling. filtering and system the conn..uous-time analog to the predictor space and
identification. gore we reviev only those relat.0 prodatt. Akaik•s work although he was the first to
to the canonical vartace approach. vith wre technical propose a realization algorithm. The methods involve
details :ontainmd in the appropriate sections. The abstract Hilbert spaces to accommodate conttnuoos
theory of. canonical correlations and variables vwa tioe procesa•s (Levinson and Kzc~ran (1%4). Kcimaa
"4eve'op-ed tndependently by Rotealling (1936) and Obukhov (196a). Pitt (1971). Roaanov (1976), (1977)).
(see Celand and Yelloe (1959)). The stlution of the
canonical variate problem vas first reduced to findlng Tha optimal Retalm. torn epproech ot Adamuen
the elgevectors of several symetric matrices et al. (0976) has received such recent attention

eottLltns k19346). also see Anderson (1954)) A it trvtuced order modeling (aee Kun; and Lin (1981)
~r ~n~ta~oalrefficient. nuftrically accurate &--L cited references). Canuto and mensa (198')

And stable zethod was developed by Golub (19-69) based IslCkMe relationships betVwee the canonIcal Variate
4;-a the Singular Value d#<0=oeition of 4 matrix. approach of Altaikq and the optimal tanil "oM

aopro'ch.
;4!fartd and Ta~loo (19W9 genarallied the canon-

4a varlae method to descr'-be th correlation 2.AproaCh
6tr'.cture between Eva dtscrete- or cent Lnuoue- -tim

. o ta ggoceses " ;0ssibly tiffearent time A satr Jeparture of thts raper from prvious work
nt•rcerls. They expreesed the mutual infoomation to inc l 14 canonical ier lat nlss to qpttally

tatutert two such taftde processes *1201V Lt terms f ~ oe~ma obnton, oth e frrdct~on
t."e cawncaz correatic (see Sectton S). YagloI, -of the 1ýtjre. ,'he verak n•atrai *uesasr of taratLc"
.9`0) Considered the Trlatictn•hip ttbeze the post v#1hte4 ,rednctron erro.,n atfsl all. future tun ""3"1tput5 of a Process an:d the future Cutputs tor stevs ts uQsed. :- Section I we !ormwdatste 0.0;nbIe
4ity two dLs~o1:%t thtervals) art has showný there are a and s~ov IOw a 6cenaraltzed cazealtal teneats anal-re'.
finite nubrof nonz rtozica cl. cvrralattoma %frbi ole teplcty L ter;fetatlo,
2nd ZOInir f the VtOceSe N&S a ratlonal Power ca3nonical varlates as 07tEXal pretdic0tor Is centra.
ovectraum. L"A.. Is a2 finute order Xar~cv Process. -)mtva~gitarget tn rSeth a problem farnulat icn

4;ý 1 VsercQJV founJd in thl $tatistical trar.
.r;a canoniktal variate .n ba~shtv*4 the keeptxal d-r-f preictzors are Mot tn genersl

74st And fit-art of A discrete ILSE Gt-othaeci." Preces~k. iqvarsavely copt b ue at the optimal #state-sz&--
A~a~te ~5 con4sZTrVcd a mini1ma realtattion stT=tvtr for apru igthem to expressed itnzl-7

* .,.~U5~re~c "riv rtceeses. nSTt~ esu~ted In a in Itr= 'f "%Q ca=ontce! variate AnalvosI. the
Patof VNls yore Was ;er?7-m.nd viethe 4authe 7'Dmim cf uoelIaMtot~ anm vrtat .or~

at 1^0 AnA&Vt1C kiences C-0rýor7t Ion. 10adIcti. XA.

Reprinted frzg Pr-tedinFr, -1I the 19fP3 Amcrft-an Contro) C onfrtnct', June "-Z-24.
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3. Statement of the Problem extension of the claduical canonical variate analvsis
method. The derivation of this extension I-& rather

Consider Zhe problem of choosing an opt imal lengthy and will be described elsewhere.
system ormodel of specified Order for uss in pre-
dicting the future evolution of the process. We will In the statistical literature, the canonical

*Iistinf~uksh between the past p(t) of one vector pro- variate problem is delt with as one of mnaximizing
cess r(t) at time t or before and the future f(t) of correlation between two sets of variables (i.e..

another vector process s(t) at time later than c so p(t) anu f(t)); whereas our interpretation will be

T T Tchoosing variables from p(t) that optimAlly predict

p (t) - (r (t). r (t-I) .... ) (3-1) f(t), which is rarely the conceptual framework used

f T 0 -(s (cl).s T t+2 ... (-2) in statistics.

* (s(t+). s~t~),..) (-2)We treat here explicitly the came of finite pasr

'is sssume that the processes r(t) ind s(t) are jointly and future, i.e.. p(t) and f(t) of finite dimension,

stationary, to avoid the technicalities of the infinite dimen-
sional case which is discussed in detail in Gelf and

The major interest is in% determining a specified and Yaglom (1959).
number k of linear combinations of the past p(t)
which allow optimal estimation of the future f(t). 4.1 Canonical Variate Solution
Any se- *i k linear combinations of the past p(t) are

denoted as a Icxl vector m(6;. iemory of ,he past of The solution to the canonical variate problem is

o~rder k. The optimal linear prediction f(t) of the expressed quite simply by putting the covariance

f uture f't) which is & function of a reduced order struJcture of past p(t) and futu~re f(t) in a canonical

~emory ta't) is measured in terms of the predi~ction form. We seek nonsingular transformastions of p and f

c a Jp. d -Lf (4-1)
ECf-f)T* e-l ( - fX1 (3-3)

7~ such that I.n thi-s new basis the norm (3-3) for weighting

'.aere -~is an arbitrary quadratic weighting and E is prediction errors of the future is a sun of squarts

che expectation opeain The reduction problem is Z T( ~T) -1 dTd 4
!*carmine an optimal k-order memory 10 Ll 42

In addition the covariances among the past and between
the oest c and future d hawe a canonical structure

"r -4htcih the optima1 linear predictor fit. X(t))
-4tnntOzas tne prediction error. cov (c.0)-1

:n various particular problems, the process r(t) cov (c.d) -0a(....0..0 4-

*f tste 7ast wil' include outputs of a system and/or
Lfptszf a system. The process s(t) of the future vith the canonical covariances ~ QIn descending

may e te sne s rt) r difernt. TheBenral order. Thus, the components of the past c are Mituall-t
* ea~tse of Lnterest is the reduced order filtering and ld O l iercniain fpadf

!30de1lnq probl*ý- i±ven the past of the related ran- tefrtcmoeto a iir oainewt
doe processes utt) and Y(t). we wtish to model and th first component of c ad "an.vra~evt

;radict the future of Y'fc) by a ka~rder state-apace, tefrtcmpnto .

~i *M ~It can be shown that for anv order k. That the

0 -* ~first ;A componentso al . i.e.. corrosponding 1l1nosr
jambIctationa of topast p. lead to the beet predtctiot%

Of the future !. The optLZa.l choice of a 'k-Order

* ~ u - amo**.(3) e ry is then

-K*4W.1tha ar (L, .01.1
UteVadv 4tv Alt* ftojii rea tat are

d, ~ ~ ~-cnt the Co-s~c M ~e "e-124146 77red1ettfn error for Order k ta OLZpby
iwe-'- Qst v- Vi O recesss odl ' Mo exprvoted &a tar-me off the tannItcai. cowark-ancoo as

IMAan.: 0ý *i ~ rror In pro~ettc~ns -' from ti.

A 7,:izcase i *h. edue r (IftterIns probion *In (:*
t the IT3ra~t r f14jnction epprexsautlon 7roblea vthere k.

41ý T 4re the 117ut an~d liatput processes samd an
a~trui5.ato tte-11pato mooel toLa 4eICd.

~ ~. ~ ~aces~ac eee'ttn for4 1.31, inte 'orep~i a the feal~cede v4T1ab1#s gtves %tte

*V- 'ýtif fe ~ 1v T0 #C--:*%v1)r 1QC.rIbing ýtr increased pre'diettion orr" ftom u*Lng Mse.*rY orle- 4

~rt f th rrvlem i~e."oweer, rather the~n

sett'.- *£C ke .0 4 's rh-csiE; th to~t to findinC I Ancd 1 &;'-th that

vaticat ottti~t-cs. Aerie t"e scltItit 15Cts ~ t

7c, %treat the pretiirti -. e cf sect.* I~ tn.aOijt' 77

B- 3



T T T
This Ls easily accomplished using a singular valu- ' a USV UU U , WVV (4-19)
decomposition (Golub (1969)) which is computationally
very efficient and numerically very accurate and where S is d4iagonal with nonnegative singular vaa..Cka
stable. Dimensions of p(t) and f(t) as high as sey- in nonincro.•ting order. A property of the singular
eral hundred can be handled efficiently and value 4ecoempemiions is
accurately using these coepucatioatl techniques.

inf -Allt 0 ~k1 (4-20)
To find this decomposition. first the square A : rnk(A) < kroots r'land " aeouusdyeter Co ek

0 are compued by etcher a Cholasky As shown in Adamjan et al (1978), this bound is

procedure or on eigenvector procedure. Since a achieved for A restricted to a Hankel matrix for
singular value decomposition procedure is usad sigle input•output systems, and Ls ac least a lover
latter and is numericallv much more accurate and bound for muitivariable sysctms. This solution i
stable, it can be used to find the eoionvalues is a minim• a solution - for a given approximation A
and oigenvectors the norm (4-17) measures the largest possible error

in output fNture aequences f over all masible peast
U S V S v (4-10) sequences p vith l~l p°1. for finite order systems.

pp IS 2 2 2 the exponential decay of the impulse response " Ll
where U -VI and U -V, are matrices of the esigenvctors, cause ,he vorst sequence to be corwentra•r• near Lhe
S an1d S2 are diagOnl and contait1he eigenv.lues. origin. This is a very atypical nput seO3Imnce to use

S. IandS 2arediagnalandconain he igevales. as a basis for meacuring closeness
and the equality of the U's and V's follows sincey rt n

and i are positive definite and symmtric. The By contra•c, in the canonicsl variets for Lio,•,
-;•P the nor* is

square roots are

:- �p . S; T' T. - (4-1I) EllfH - fAjj 2 * tr(H-A)(H-A) T  (4-21)
1 1 2 22

""o form the matrix
the Vrobe[nus norm. fro& (4 -6) this norm hea the

A - (4-12) lower bound

and 4o a singular value decomposition A ranc(A) - kL

A USV * V V - 0 (4-13) A fundamental difference here is that the norm .4-21l

eesures the everage overall output sequences result-
here S ni diagonal with normeative *!¢*nts in log frc• Tandou inu.)t sequences with unit average p*cer..'estella| order

i.e.. S(u(t)) I for eQ; whereas f•or (4-20). •.*uit) •-

Camto an. ,enga (1982) discus s oe relationships
•Te canonical variate decop•ositica Ir obtained b between the caboyical correlation and ,ankel norm

n*tz.na ;"approaches. There is no interpretation of the

T cwaonics-l iornelation& "in a norm as LnU? t. , * T S (4-15) Equattor- (ý-61. and4 urther they ntote that the '

-.1 RtiationaZtig z Ningular values tn the two approaches do not %'tncide

They cavtludo that "because they (the cuanoical
correlations) do not have any practical significance

Constder the determintstic Input-output case abut Ctoe energetic 2%st%.rucu Of the dynamics of the
v#*t which can h st la ;he canonical variate fremework process. the ptoe4rele of the resulting approxziated

otothespi moo n 1W dels art not clsar'. The Present ca~oonica.
i.tt~o : The tavartance matr1x is '0erto iprOech Vekta clr hat the enterestic

" pp pucture s of the dremsoce i- better azcaunteod fr LbA
the prodict iou error measure than it ts by the

N-I) tdlllt4 (1916). A.M.1rSO0 195 . 0:0 24 tChat

• a t kke 1•* ,r b t "~ d t"the tre d Is not%1- " the -tt" ae e%. tlsty cý^QQ te pzkl stri A1fttt.W9theLwuto"*Wa ma-fri ALmc t6 ce hieca covarLA snde r hi

o a % .9 as C......1. coef.clets. .he trsdittoal tr.• r,.
to the exteo that tkere ,% been 6""' diacueatrns.

a tc&vr* the ma" I..w1qvto _____________

Aar * Is th "tal-.
0 Vo-o ta9'~ do d

~o'v cns V.e 5 vSit r.~ eoCci o f
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The base of the logarithm iS arbitrary and determines 5. State ". - alilzation.

the particular units of information, and ppf is the As discussed in 3. there are a variety

joint and p and pf marginal- probability den- of problems of tnterest iocluding reduced-order
stochastic modeling and filtering. The most general

Gelfand and Yaglon (1959) shoved that the form ts the scete space adal

.wtual information is simply expressed in terms of (5-1)
the canonical correlacions Yl"...fa between the two tl t t t

nvectors by 2v . + A y Bw t v (5-2)

j(p;f) , - log(1 - -3-11og w (4-24) where u Ls an input process, x i* the state vector,

w e t i ( 6 a th e r ntw is whiite process noise with coveriance matril Q.vt

uher-e Uotellini (1936) defies the vector aliation and v. is white measurement noise uncorrelated with

coefficient

2 w with covariance matrix R. It has been shown

.. ( - )"" ( - ) (-25) (Lindquist and Pavon (1981)), that for no input ut,

as a measure of independence of p and f. Gelfand and the form (5-1) and (5-2) is the most general state-

space realization of a !'arkov process, and that the

inlormati0n9t vectors ohdf innitionly mutanyrlo state dimension is equal to the Markov order. Other

Inorariabnes. vecg. orano pocessesinitl bath continous arkov realizations as In Akaike (t975) and Baram
varible. cg.,randm pocesesin bth ontnuos .(1981) witich have A-8-G-RO are not the most general

tine and discrete time. This developmenet also and may require such higher state order for a suitable

provides the basis for extending c€nonical variates approximation. These latter fors are particularly

-to random processes (Ya$lom (1970)). inefficient in the presence of moving average terms

Now. If a restricted nuer k of linear combin- or additive white measurement noise. As will be

1ao ret or the past of one radom process Seen below, a regression interpretation of the

state-space *&:rice* makes it clear that tht error

r(t) are used to predict the future of another random in regression I* ignorez. A further point of

procets s(t). then the %oice max•inting the mutual Linaquist and ?avon (!tB1) is that for a parsimnious

Lnf•)=ration is the !irst k canonical variates and state defined by the predictor space. the past and

the =cual information is expressed by che ftrst k future must be nonoverapping as In (3-1) and (1-2).

canonical correlation-s
For the purely stochastic case with u(t)-0. loet

C?

""Ks. the canonical corretlaion ftthod provides an

apt-ital procedure in terms of mitual information for in sett Ln4 up the past p and !.ture & as in (t-l.)

:hoastng i rticie vt-mber .34 inear :oebinatlons .2 ror the case of s deterministtc tnput 0j(t). the input

tint raw-Ion 7roewes ' Vr predictiona of another, must also tke included In the pest so thait

Recently. in the statistical titerat,'re Yo.•i r'rt) - (u'(t. y'rtf); s(t)-yt) (5'.)

and t•c tj 'e. 40) point out the use ao! canonical

,;a-.Ate* 4soet. pretitzors. - ey sh-ow that the Aact!oT.e Case is the deemnsi iptotu st'tu

* .anol:, va~ats t~t ~ n or shem) ith no procevs and neasurement ftoises U aed- t o

* *4AI~M44 the pre ictiona error

Sic, tv that !n *he -,44se a no4C~n tn~ut 4(t) pretent.

v+'aQr eee dtria andA the anttim=m ValUe the co~avrlsnte 4untc IOn v:! i4s)t reaur'srd Aid

In ;peclfvin U01T mot &m tant :ou820nants 4. the

Al. Peat" 04 qil t=o lndt~~ -t th* ttate far

'~* otI;~pt~5L.t. -4 'Vt aý 4le rLE4V 14407 a fO A s'44e. we vi~to

~~ttrC nea T. ý,ro Vrtoam* to the sin a*eO.S, mU~ual 1I .0s k 99 etaftent kt~t*. `hto t* *1VivqfM Iq

~ ~ ~ ~ *t~*s ~ pr~l~ ~ finting the k ...nest INinri4 "ste et

e'I~ ~een.I~~erst9frthe ea"ie WhIc)h Nave the 'cast *W'ttv lo, ??"Ulc the f-4ýTqr

ant v~ttt Air* gso co*ruteste te'atttvrs~oit tn t

amto. th '1arateT 'os~ t*-' bhrve *ii "1ct1 ý*ts
•ar.e ; 'e-t#Tin• -.• I r ,t ."t" ' *IvtV l i t.er . t 5'. . 5 t-h

4G t'.r* -), %tat forat-Latet 4rt e4li'ed iý eroier sa t ILa-r5 e sre Iv fyki ntl'
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To determine a state x(t) satisfying the recursive development and full acknowledgement for the origin
relations (5-1) and (5-2) which approximately givcij of these ideas.
the optimal k order memory m(t), the optimal predic-
tion of m(t+l) and y(t) using m(t) and u(t) is deter- 6. Example in Impulse Response Modeling
mined from simole regression relationships.

In a recent study (Goldstein and Larimre

The dynomical equmations (5-1) and (5-2) eipress (1980)) for the National Weather Service, the can-"Ts onical variate procedure was used for dertving
(x ,, y ) as a linear combination of (xt, ut) plus a reduced-order stata-space models of stream-flowwhit noise vector with correlated componento. Thus, rdcdodrsaaeae•)eeo temfo+1~ nostetrwt cteae opnent. Th, dynamics. This was a necessary component in that
using simple multivariate iegression procedures
(Anderson (1958)), the matrix for optimal prediction study which investigated the application of Kaluan

of (m ) from (m u) s filtering and maxi'um likelihood parameter ideatifi-
o t+l' t m, u cation to hydrologic forecasting.

The problem is formulated in terms of a given
m unit hydrograph h(T) thso' specifie~s the response at

F( (` t+I -t - lag T to a unit pulse input at time zero. It is
HA o Iyt )' ItI( u t \ut desired to find a state-space model, preferably of

low order, which is a good approximation in some

and the error in prediction has covariance matrix sense to the given unit hydrograph, Tis problem
cannot be separated from the characteristics of the

ut process since the modes of h(,) that are
S1l M,+ excited and, hence, the output depend strongly uponS S22) cy V, the input process. Nominally, it will be assumed

"J that the input process is white noise which excites
"~t~l~ /b~~7s~/m'j 7\/m \-1all frequencl~as proportionately. If the typical

+\ cov -- ut)IM cov k k yt+c input signal power spectrum is known and different

t /\ t) ) _ and would lead to an Alternative approximating

(5-8) state-space model. It will be shown that the white
The matrices Q, q, and B are s~a.iy e i in terms noise assumption leads to excellent approximations
of S by of the unit hydrograph with low-order state-space

modeln. A schematic descri :ion of the problem is

Q S shown in Figure 1.

B S S+5
21 11 (59) uWit -WHITE OANNEL UNIT ,;t) OUTPUT
R 22 - 1 11 S12 NOISE INPUT HYDROGRAPH

where (+) denotes the pseudoinverse.. .

Explicit computation of the covariance matrices .
is obtained using the decomposition and the covariance REDUCED-ORDER A IMATE
of p, f, y and u as STATE-SPACE

S.• .FILTER

cový( i k PtOYkp-

( ) . t ( t) by a Reduced Order Filter'mtr 1AprxiatonofUitkyrotai

o t)(mtj (coy • kptThe reduced-order state-space modeling
co\ *Mt )t cv u. )I described above has been applied to unit hyerogrash3

o yt for a number of river basins supplied by NS. The

coy -• character of the reduced-order models is illustrated

This, then, gives the covariance matrices explicitly below and described in more detail in Goldatein and
in terms of the covariance functions involving u(t) Larimore (1980).
and y(t). In the purely stochastic case that there is
no input u(t) present, the componelats of u in the No different weightings 9 of errors in

T predicting the future f were used, 9-! giving a sum,sector (' u,.u) are deleted and C and A are then not sqaeeroornrg auead vikat squared error or energy meassure and -ý-Lff 4.1viti a
computed. For the deterministic ca i where wt and vt squared relative error measure.

are zero for the full order realization, it may be of The differencs in reduced-order ordels obtained
use in some reduced-order modeiinq problems to compute from theee two ,•asures of prediction errors depend03B, .mu R to give a redured-ordet model, The reduced- tomheewo asrsofpdiinerrsepd

in-'dRer o givdealre(5-pd7)rd model.sTahe redune d- svery strongly upon the spectral shape of the hydro-order model (5-7) of a stable system can be shown graph transfer function. A striking comparison in
(rujiahige et. al. (1975)) always to be stabla, fit using the two criteria was obtained for the Bird

Creak basin which is order 14. The six-hour uult
The existing literature on the use of th canon- hydrographs based upon the input hydrographs for 4-ical variate method in deriving the abrive reduced-order and 8-statc models are shown in Figure 2 respectively

state-space models is Sased upon Larimore et al (1977). for the two cades ar-I and The respective

Baram (1981) and Koehler (1981) describe a restricted
stochastic modeling problem using the canonical squared magnitude transfer functions are shjwn In
¢:rrelation approach ( no input u(t), no me&- Figure ). .,ore in Figure 2 that even the 4-state
surement noise %:(t), and no prediction error Interpre- fnit hvdrograph tram the case J- has a significant

tation) essentially as it was presented in Larimore nonzero call whereas the -- state unit hVdrograpl !r,,m
at al (1977). White (1983, gi,.is a more recent the case --1 produces an exce>lent tit. FIxure 1.t

B-6
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(2a) Squard Relative Error 5Z r

II OP
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2
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(2b) SuSquared Reaiv rror, •- (3b) SumSuared Rl~ Error. @ - -

sih-re DsedadFut-rdr(ahdaoOrgnl(oi) Eih-re (Dse)/n orh

A',

. ,•2 \/*

0 ......... 

\ .. .l-.I VO lO dv

(-'b) Sum Squared tu r ly e rror(b) Sum Squared Errorl t s p

'igure 2. Six-,iour Unit Hydrographs, Original (Solid), Fiture 3. Squared .Magnitude Transfer Function,
ý_' ight:-Order (Dashed), and Fourth-Order (Dashed and Original (Solid), Eight-Order (Dashed). and Fourth-

•. 3ozted). Order ODashed and Dotted).

l -earl'i illustrates the tenderce of the case e-1 to considerably extends the usefulness of the method.
• ;it a!} fr!quenctes with nearly equal percent error. While Akaike considered only the cast of process

whereas from Figure 1b it is seen that in the case noise, we include any combination of inputs, process
'• -1 the frequency bands of highest energy are and measurement noise. This extends the approach of

e empnasizcd. Thus. for a hvdr,graph with a large Akaike to the reduced-or4er filtering and transfer
* ipectral peak and complicated spectral shape, i.e., function modeling problems as well as modalln .n the

rejuirI:,g a high order rational function for a good presence of an input function. The use of a non-
' ipproxtmatlon, the case 4-1 can be expectad to excel overlapping past and futur^ lead to lover-order
. .n fitting the unit hydrograph. state-space models. Using a finite past and future.

-' simple and computationally efficient expressions
" :0. Conclution are explicitly given for determining reduced-oraer

sysrem state-space matrices. A particular upecializa-
. The canonlcal vartatc approach provides a power- tion of the canonical variate procedure is related to

. ful and general procedure for reduced-order modaling, th•e ankel norm method for deterministic Lnput-uutput
filtering and system identification. The procedure systems, however the forr.er hus an interpretation in
is computationallv noniterative and incorporates use terms of the prediction errur of the future.
o .I s~ngular value decomposition which is numeri-

Qallv accurate and stable. This guarantees a compu-
cit: na. solution in every case. All reduced-order The example modeling river basin dvnamics
*.de>s are easily computed from one singular value illustrates the flexibilitv of the general
Secnmposlct on. quadratic '•eigh-ing of the error in predicting the

future from the past. T.h cIassical canonical
:'This paper extends the pioneering work of Akaike's :orrea.'tlon prcedure ýeads ro uniform fittng -.n t•

to a rumbet of dIrections. A generalized canonical frequen .hVAtuain -4:1 !e t sm icuarC error critoricn
,',ariAie rocedure is exnlicit:v lescribel ,-: terms :eads to flcurat ttrng )f the init pulse

'. of min•miting an arhi:rarv quadratic weightin )if the response.

error •n prediction .f the future frn- the past. 7his
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ADAPTIVE MODEL ALGORITHMIC CONTROL
1'2

4 W. E. Larimore, Shahjahan Mahmood, R. K. Nehra

A Scientific Systems, Inc., C~abridge, MA 02140 U.S.A.

Abstract. XYodel Algorithmic Control (MAC) is a relatively new design methodology
successfully used by industries for the last several years. The objective of this
paper is to investigate robustness properties of MAC, and evaluate the use of
adaptive methods for real-time identification of the plant under closed-loop control.
Some theoretical robustness properties of MAC are given in terms of classical qualities
such as gain margin and phase margin for a wide class of systems. Although MAC is an
output-feedback controller, it has a guaranteed continuous-time equivalent phase mar-
gin of 600, and the upward gain margin can be made arbitrarily large by slowing down
the referenze trajectory. Some robustness properties of MAC are also given by a
pertLrbation analysis of a miss-modeled plant impulse response. Preliminary results
are discussed for on-line identification of the closed-loop plant using the canonical
variite method. Performance of the identification of the plant in the presence ofS .both input and measurement noise ts given.
Ke__•rds. Adaptive control; identification; robustness; canonical variate analysis;

model algorithmic control.

INTRODUCTION an input u(t) and an output v(t) to be

The mcontrolled. The y(t) are related throughThe MAC methodology generates a control a convolution operator(A)

sequence by on-line optimization of a ,n

cost-functional, and the algorithm is suit- y(t' - h(t) * u(t) - h ,u(t-i)
able 'or implementation on microprocessors. i-I
One of the a:tractive features of MAkC is the
zlear and transparent relationship between or,
system performance and various design para-
meters embedded in the design procedure. v(z) = h(z)u(z,, h(z) - - h z (1.1)
'tAC has been described elAborately in the i-|
literature (Olehra et. al. (1977, 1979, 1980),

:4ereau et, al. (1978). Richalet et. al. (!i) A model ef the plant h(t) -hi -1 .. N:
(1978), and Rouhani and Mehra (1982)), and
therefore only a brief descriptio, of MAC is with output ýtt) and input u(t, so tnat
given below. The t-transform or s-transform
"of a time function is denoted by replacing N
"the time-argument by z or s respectively; 'it) - hlu(t-i)
""or example Y(z) denotes the z-transform of i-[
y(ni. ror the sake of simplicity a single-

*.inout single-output svstem is considered or,
although tne extension to mulilinnut multi-
output plants is conceptually straight- v(z* h(z)u(z , n(z) 7 - hiz 11.2)
forward. i-I

There are fie basic elements in MAC; (III) A smooth trajectory y (t) initiated on
r

"i) An actual plant with a casual pulse the current output %v(t) that leads %,t) to a
response function h(t) h . I -,. ..N-, poss-i1y time varying set point C. The y Xt)

* I t work was suo*or:ed by the Air Force 2 Reorinted from 7o•, [AC '4ortshcp on
'" •;r"r 't Azronauti~al '_aborator ,,..

Arnt brr .antive Systems in Control and Sinal'rocessing, June 7T-.2. 1983, San Francisc•.
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evolves as follows: (z-l)k(z)u(z) (I-4)h(z)u(z)
r(t+l) - ayr(t) + (1--A)c(t), yr(t) "y(t) (1.3a) =(-cz l7

(1r+1)z (1.7)

yr(z) - Iz' y(z) + (i-A)z- c (z) (l.3b) By further manipulation (1.7) can be express-
ed as

where t is a constant detertzining the speed of u(z) --L
response; c(z) (z-1)n(c) (l-,)h(z)

(iv) a closed loop prediction scheme for pre- Y(z) h(z)(l-.
dicting the future output yp (t) of the plant c(z) (z-l)h(z) + (l-i)h(z)

S~according to the scheme Equations (1.8) imply that MAC under assump-

Y (t+l) - (t4-1) + y(t) - v(t) (l.4a) tions (i)-(iii) above is equivalent to the
P following classical unity feedback configura-

tion in an input-output sense.
y (z) - '(z) + z- (y(z) - ý(z)) (1.4b;

Pz 
- Comptneator W

and finally -
* 1- z) u(ZF~iPlant

(v) a quadratic cost functional J based on 1T 6(2)
the error between y (t) and v (t) over a finite 2 2* p *r
"horizon T: -j

W.'3 - i (v ((t+i)-v Ct+i• 2 
w(i)

'r ("i " Fig. i. MAC as a Classical Controller

+ u(t+i-l)r(i-l)) (1) This interpretation of MAC is the basis of
our analysis of MAC in terms of classical

where w(i) and ret) are time varying weights. control.
Usually r(i) is chosen to b- zero.

'lIASE AND GAIN MARGINS
Given (I) - (v), NAC finds an optimal control The block within the dashed line can be". sequence 'u*(r+i-1), ... T-. by minimizing csered as a damic lle of te
".J over the admissible inpuL sequence considered as a dynamic controller of the
Su(t+i-l)L.(i), i - l,.... T-I . Once the classical cype. The loop transfer function

optimal control sequence is computed, the at point I is
first element of the sequence is applied 0z )"the actual plant and the process repeats all L(z) h (-.Ia)

over again.

To investigate the theoretical properties of and the return difference function is"MAC and to interpret MAC from the classical
control viewpoint we make the following ltL(z) = i(z)(z-l) ÷ h(z)(l- (2.1b)assumptions: 

h(z)(z-l)

0i) the actual plant h(z) is minimum phase; The error e(z) c(z) - v(z) in tracking is

given by
(ii) there are no input constraints, i.e.", (i) - R for all I, where R is the real line; e(z) - (lL(z)) c(z)

so tchat the stad state errdue toasep
(iii) the optimization is carried over one input is

p.. future step ahead i.e., (T-I); under this
condition MAC is a one-step ahead predictive e (t) - Lim (U1-L (z))- I + L()) -
controller. ss

"nder these simplifying assumptions, It is which is a consequence of a builtin inte-
a sufficient to select -1t) satisfying grator in the compensator. It mac ie noted

.' (t-l) * Yr(t4l for all t (1,6) that using the iet-up of Fig. I and -v treat-

SQr a minimum of the cost function J. The ing (- } as a gain, th• usual cassica
a assumptions (i) - (ii) ensure the existence of root-locus technique can be applied c)

an optimum control ift) satisfying (I.6).u(t) analyze the behavior of the closed-loup poLes

is then implicitly generated bv v (z) v ' (z) as L changes from 0 to t. To make thý. root-
io that plocus picture complete, the characteristic

polvnomial can be rearranged with a nodifiele
gain " - so that as c caang!• {:zio

'io ::an ei :romn ) to tnft n.-."
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It may be noted from FiP. 1 that ic point 2, L(exp(Ju,) j 1-: c t ,
x(z)-y (z) when h(z) - h(z), where y (z) is 2 - (2.4)

the reference signal. This shows why perfect and :L(exp(jo): 1.0 implies the unity
tracking is possible under perfect gain cross-over frequency t
identification. We will, however, not pursue ae
this approach here. o 2 sin 1 1-.•10 in 2 (2.5)

It is obvious from (1.8) and (2.1) that the The Nyquist plot of the discrete-time loop
closed-loop system is internally asymptotic- (2.4) is quite simple and from the plot it
ally stable if the roots of the rational is easy to see that the system is stable for
function all gain c(o, 2/1-.), and a pure delay

l(z) * (z-l)h(z) + (1-a)h(z) (2.2) 900 - Sin-1 (1-'a)12 will change the
S(h (number of encirclement by the Nyquist con-

tour, thus making the system unstable.
are within the open unit disk z1<1, and
these roots are also the roots of the return To get the equivalent PM we transform each
difference function I + L(z). We can there- element of the loop using the bilinear trans-
fore find the stability margin in terms of formation s - (z-Dl(z+1)' 1 to get the
the gain margin (GM) and phase margin (PM) equivalent continuous loop
from the Bode plot or Nyquist plot of the
loop transfer function L(z) evaluated on the L (s) -- (2.6)
Nyquist contour z - exp(Ju appropriately 2 s
indented around the poles on this contour.
Recall that in continuous-time, t'e GM and From the Nyquist plot of L (s) it is obvious
PM are those values of k and ý r, )ectively that GMz(0, 21(1-a) (the same as found by

, such that the perturbed loop L(s) = analyzing the discrete-time Nyquist plot)
kexp(j 9L(s) is stable, where L(s) is the and a PM - Cos-i (l-W)/2.
nominal loop and s is the La',lace variable.
A similar interpretation goes for the dis- Theorem 1, although very simple, reveals
crete-time systems (Kuo (1980)); but the PM, some intuitively appealing results about GM
unless it is an integral value of the and PM of MAC. We can make the following

sampling interval, does not have any physical remarks.
significance. Strictly speaking the complex
constant kexp(j)) in continuous time should
be replaced by kz-n, n an integer, for neasur-
ing GM or PM of the discrete-time system. ( in te PM is the reetivear.

GM is 2 and the PM is 600 respectively.

Another way to compare with other continuous- (ii) We can always trade-off robustness
time domain design techniques is that each against the speed of response. As response
element of the discrete-time loop should be speed is increased by decreasing ., BW
transformed into an equivalent continuious-time = 2 sin-1 (I--)/2 increases (which makes

element using bilinear transformation, and PM sense) with a consequent reduction of
of the fictitious continuous-time loop can robustness in terms of GM and PM.
be taken as the PM of the discrete-time loop.
in this paper the word PM is used to mean (iii) We get this t -arkable PM even though
the continuous-time equivalent phase margin. MAC is an output-feedback controller possibly

"" We can now state because the plant is inverted -,-,sallv

T r through the use of an optimization algorithm
Theorem 1: in the sense that at each time the algorithm

provides the controller with the entire
Under assumptions (i)-(iii) MAC has future input sequer.ce. For the same resssn,
GM - (0, 2/(0-1)), equivalent PM- Cos"(i-•)/2, the discrete-time loop has a one pole roll-
and unity gain cross-over frequency off for all frequencies - which is rather

"- 2 sin-I (1-.)/2. unusual.

Proof: The proof is trivial if we recall (iv) Theorem I ensures that the controller
that PM and GM are measured on a nominal loop. :an stabilize the loop for all the plants
Here we can assume that the nominal plant belonging to the set
h(z) - h(z), .hich implies h - h and N - -h h, . kh 4, . .i., kt(o, 2/(1- 0).
because both h(z) and h(z) a(e power series i
in x-1. The nominal loop transfer function PLANT ROBUSTNESS ANALYSIS
irom (2.1a) is then

The nominal model h(z) is usually different
. (2.3) from the actual plant h(z) for various

,Z-i reasons. Sometimes ':(z) is deliberately
made simple to facilitate the zontrol comou-

i.e. an integrator delayed by ane-itep. tation ýv retaining the modes in the .ci:i.e
Evaluating an z exp( .), we aut frequenc'- range. On "anv occasions it

I C-4



difficult to model high frequency modes, Then by straight forward manipulation, the

and these are simply neglected. Due to age- closed loop characteristic polynominal is

ing, qtc., the modes of the actual plant N
drifts slowly thus introducing low-frequency '• (z) . z (z-l)h (z)

error. Thus the modelling error e(z) has in clp P

almost every case, a dynamic structure; and z

the information about e(z) must be incorpor- p

ated in designing a nominal loop. As a

minimum amount of information e(z) is expres- For closed-loop stability, Dcl,p(Z) must have

sed as an upperbound on .e(exp(j-))I; and all the roots strictly inside the unit disk

the purpose of robustness analysis is to 2zi- I. For perfect identification I N,

find a requiremenr on the nominal loop in h (z) - hz) c and b _(z) - z' (z-)L)h (z).

terms of this upperbound so that the closed O the(ze and wP()

loop performance and stability is maintained of course the zeros of h(z) and z will be
inop terforance ameng stnbieitysa inint. cancelled eventually leaoing the only closed
in the face of modelling uncertainty, loop pole at z - a. However N, the order of

Usually the admissible uncertainties are the true plant, is usually unknown. In real-

world situations, (3.4) can not be evaluated.e x p re s s e d in tw o w a y s: a d d it iv e ly o r m u l t i - Th a c u l p nt h z m s t b c o i d r d s

plicacively. If we take h(z) as the nominal The actual plant h(z) must be considered as

plant, then in an additively uncertain model, a perturbation of the nominal plant h(z), and
c " hthe stability conditions must be derived inwe express the actual pletat h(z) as

terms of the nominal sequence i' and the

perturbation 5ha(z) or .h (z). Let us assume:() (z) + .1h Wz) (3.1) a M
a that Aha(z) and .hm(z) can be expressed as

and in a multiplicatively uncertain model, in (3.3), i.e.,

"' the actual plant h(z) is

h(z) - h(z)(l + !h (z) (3.2a) h a -
m ah z ) - " h a '

kM, or h(z) - h(z -.h (z) (3.2b) -.
- a _N .h (z) :.h (z) 4 polvnomial

ap a na
?,r single-loop system, ",he order of multi-

plication in (3.2) Is irrelevant, but for

MIMO cases the ordet is important because of
the non-commutativity of matrices where input -m '4 (.

channel (left) uncertainty and output-channel Ihm(z) " miZ m h mp

iright6 uncertainty must be distinguished. I

3oth of the multiplicative forms in (3.2) lthough the following theorem can be develop-

.ire often used In analysis, but in this paper a ithout uh an explic th orm c ote that
1b ed without such an explicit lorm, Note that

.'e shadl be using (].2b). Note that at noma-
wne vhalleuesig of te pa N (e) t ha (a) n o the index in (3..b) must start from 0 tO
tial values of the plant, _ha m accomodate constant multiplicative 2erturba-

and .1h (z) - 1. Also note that the classical tion. We have the following theorem onm

and PM ensures the stability of a perturb- robustness:

ed plant of the form (3.2b). If the GM is k.

then 2.h iz) - k, and if the PM - n (in the

sense ot ,%crete-dkta system), ..h (t) - z-n.
these are undoubtedly a limited class of (I) The system is closed-loop stable 'or adL

allowable perturbation& and we must consider additive perturbations .h ha) satisfying

other possible error-structures in designing

:he nominal loop. The framework of (3.1) and

(3.) is more general in the sense that it ".h ' h z)

can handle a conqant, non-constant and even ap I-. p

dynamic model mismaach 'say for example

unmodelled poles. etc.i. Let us rewrite - - expI; J .')

h'za and h(z) as

h • -1 -Z N hu.tlpli,:ative perturbations ".h, 'z sattst':tn,
htz) - - nx * ,, h. (a) C3.3a)

-p

-te h (h h: m

%here h (a' - h• - a polynominal in 1, on tne unit circle, vhetv ý.hap and 1 ,
i-IAp Mp

.ire Stven bv (3.4).

, • Proof: Th e proof -i itraightforwar'
4  .f 'te

) "-t ,-x res~ -itz ", -.isung the form 3.3) - .

.ind the 'errespon'In& closed-loop •haracterL5-
b i-d in'n!omt, in.nilv 4se Roucne',

:heorem t: .r:'.'e 7,n i'e assumr: ,.in -at

"" tc-5



the nominal loop is internally stable and model is constructed of the form
hence (z-A) h (W) has all the roots strictly

inside the unic disk.z 1 xlt+1 , •x + Cu + W

The tests of the type (3.5) are sufficient
conditions and generally tend to be it .X t + C Vt
conse-vative. Nevertheless we can make the
following remarks: where w and v are white noise processed that

are independent with covariance matricas Q
(i) 3oth tests ( 3 .Sa) and (3.5b) are and R respecttvely. These white noise
useful. For example when an actual known processes model the covariance structure of
model hi, i-= .... .N is truncated to obtain the error in predicting y from u. Computa-

i1. , N N', so that Ah al hi, tionaily, a singular value decomosition of

1 * N, % + I.. N and th * O, i< •', the sample covariance matrix between p(t)
h i -and f(t) is used. This decomposition is

stability around can be obtained fzom numerically very well conditioned and stable.

To demonstrate the identification algorithm.
i Y,½r constant multiplicative gain mis- the feedback system under HAC control illus-

march, i.e. h kh for all i, htrted in Fi. 2 was considered where there

when i-0 and !h. 1 3 when i'0t, so that is ,nput white noise added prior to observ-
Skz' and test (3.5b) ing the plant Inpu. and output white noise

tempst t-.kb yields that added prior to observing the plant output

tie system is stable for all k such that with power spectral densities S and S0

,I - (. respectively. The particular plant consid-k - I - z - exp(j) (3.6) ered is the very lightly damped missile
dynamics model (Mehra et. al.) (1980)

But it is easy to see that min :exp(jj)- •'
I-' so that (3.6) becomes k-i -1 1 which /xl) (-1.4868 l'0 x) xO0 )u
imoLies kE(.0.2). This clearly shows thatthese test are conservative. (See remarks +u

tiv) of the previous section). x -149.43 O 1

CLJSEDL-OP !DENTIFICATION

The results of identification of the plant

under closed-loop control using XAC are where the states are xi - t the angle of
described in thi3 section. The major dif- attack (rad), x, - P the perturbed pitch rate
fýIultv in closed-loop identification is (rad/s). input Q - :i the elevator angle
that the future plant inputs are correlated (rad). and output X, - • the angle of attack

% 4itn the past outputs due to the feedback. (rad). An analysis of the dynamics gives a
*. "any identfiicatton procedures assume the natural frequency of 1..24 rls (1.95 Hz) and

absence if -ch correlation, end produce a damping ratio (D of 0.041.
* :4seu estimates )r have other difficulties

in their presence. %aximum likelihood will The canonical variate method was used to
""andLe such correlation, but can be computa- identify a second-order system while operat-
c io na v expcnsive enpecil.ly if not prov- Ing under MAC tontrol with input and measure-
ded witn jod initial estimates of the sent noise. No other input nor change in

?arameter3. the set point was present, and the system
was in statistical steady-state. The pre-

1'r Adentification 'n this study, the can- sence of an input or var'ing set point would
ontcal variate analysis method was used. improve the abilit: of the algorithms to
This aporoach to stochastic realization was identify the plant. The plant was approx-
first proposed bv Akaike ; 7. A recent tmated by a discrete time system using the
aeneralUat ion ("Lrimors (198, extends the exoonential transformation at a sample rate of
metnod ta lnput-output identif iation i.n tve 10 Ht. This was used for the actual plant
presence )f noise. ,he method .i baied upon in the discrete time simulation, and in the
a decomposition of -he zovariance matrix of AC control computations the discrete time
the iast pkt: And !utare fit) of the plant impulse response was used out to I sdconds
ln~ut process a• and •utput process y(t) and set to zero at longer zt=es. The true

inure and Identified plant wodels are shown uieng
stample s:lee of 100 and In Fla. 2. Noteiu••,y~_).. htte td=iflod plant 1_9 close to the

true even tor a substantial amount of
• * - *, .m...a. easurement noise.

of :he rEFEfPNCES
an, f :' eenines tCie Atalke. H. 'IWS). Uarkovtan Representatton

,- :.v': - .W! 1 '.ri a ns 1p -t .r of tochastir:oe.. 'P! • nor-, v -%.
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MULTNVARIABLE ADAPTIVE MODEL ALGORITHMIC CONTROL1

W.E. Larimore, S. 4ahmood, atd R.K. Mehra

Scientific Systems, Inc.
Cambridge. 4A 02140

A&STIACT

In this paper the multivartable adaptive control where i4,(z) is a pxu dleensional polynomial 4acrix in z
problem is addressed using the Model Algorithmic and is given by
Control (MAC) method in conjunction with the canonical
variate Identification method. Under some simplifying Hp(t) - HijZ- 1 + H2 4-2 + ... + HN
assumptions toulitvariable MAC is shown to be equivalent
to a classical controller in a unit feedback con- This is an -all-zero' model and H p(z) determines the
figuration. Robustness of the MAC controller against zeros of the plant. The locations of non--mintmum phase
unmodelled dynamics is assessed by perturbation analy- zeros Impose restrictions on the achievable periotmance
*is. The canonical vartate identification method is ol MAC. We must remind the reader that the physLcal
described in terms of choosing a scate of a given order interpretation of a zero in the impulse response
based upon past information to optimally predict the description of the plant is different from chat .3f a
future. The computation is a noniterative algebraic transmission zero in a rational transfer function (RTF)
stochastic realization algorithm that involves prt- model (or equivalently difference equation (DE) model)
martly a singular value decomposition which is numuert- of the plant. Also the physical interpretation of
cally very stable and accurate. The canonical variate poles of & RTF model as natural sodes of a plant are
method is shown to give an optimal choice of instrumen- lost in this description.
tel variables, and simulation results show tt to be
Approtleately maximum likelthood. (it) An internal :odel of the plant havtni the 4.ita

input-output dimension px= as that •f the a,-t,ul .itut
and the pulse response sequence (Rn). •-..l....A. The

I. MUtLTtVARIA"LE MAC PS A CLASSICAL CONTtOLLER !nput u(n) Is the same as thet to the actual plant 4,d
therefore the utp,.'. y(n) of the model is r-te"i kh-

MAC control strategy has been descrihed and analyzed
in earlier reportm and PublIcattons (Mehr ec 41. 1977, i(ne) - R•u(n-l) * a 2 u(M-2) ... u(n-.1) (.4)
191%. 1980: 4ertau. 1978). The following Is an

extended version for I4140 plants. or. ?(Vz) - R(M().

the MAC methodo•loy getsvr4cte a control sequence by where. 4s before,
on-line optimizactan of a cooe functional, and the
algorithm Is suitable for Implementation oc alcropro- R) - •(:) :-
ceesors. One of the attractive features of MAC ti the
clear and transperemt relatlonship between ytem pWr- and Rp(W) Is a pzu dImensional polynomial %*ztrae. A,[
formance a" various design parameters embedded in the to Kenerally different ftof (Rn).
destgn procedure. Us assume In the following that the
Input *equerce u(n) is a-diaenltonal and the output (1ie) A p-dimensional reference troptctory y~n).
sequence y~n) is p-dimenseional. Thert &to fiv* basic preferably smooth. in~tialised on the current ouput o
elements in MAC: the actual pitnt y(n) that leads yi(n) to 4 posllty

time varying p-dlmfenstonAl tet point C. If qwch of the
(0I An actual stable plant. possibly not known reference tralettories yri(n) h** a imeoc ordor 4yn*-

e1acr"0, with a pulse response sequence (0n). %ica with time cono:tant t Leading to oft pol.tt Ct.

(lie *sume for simplicity that the plant has o time with Oach cther, then Yr(n) evolves as
delay element "nd to purely dynamic. I.e. It has no
feedthrough ters). Than tha input sequence u(n) and Vr(OI) 4 ,o Yr(n) + (--A)c. Yr(n) o yin) 1.114)
the output sequewce y{n). are related by

y(n) - NlU(n-l) 0. wr(n-2) 0 ... R% I4,u(*'N) (1.14)

or. Y(a) * t(Z)U(a) (I.lb) vwere •o dtia(ot) anx C() It the z-traneformt f - .

where u(Ir). Y(t) and H(s) are Z-tranefor*0 of y(n). (Iv) A closed loop prediction schwmme for pre4letlnQ
u(n) and (%) respectively. Nere the future output of the plant accordtng to th•, qhe~.

H1(Z) - 141-
1 

+ MIt-
2 * ... D W H•(a)z-• yp("rl) - j(nlI) 4 yxn) - .(o)

This workl was supported by the Air Force Wright or. Y (2) - V(z) + A*ItY(z) - T(0I) 1 .4.b)
Aeronautical Laboratory under Contract %o.

21IH2<-C •Hare Yp(n) tI also p-ditmoentonal.

Rrprmnttd Itom THE 23RD IEEE CC)NFRENCEi ON ('O(•1. iiAlXE.i.l67• $1 (0) . I'J.-1 1i
I)ECISION AN) :CONTROI. 0,t.mhet 11 14 1484



(v) A quadratic cost functional. I based on the To see that the setup In figure I Indeed represents

error between Y Wn andi yr(n) over a finite horizon T, equation (1.7), note that at poinIt I w have

(here T, is an ýiteger):

... ft)z
j - eT(n~kW(n~k)e(n~k) (.a

k.11

T~~~n~~k R.f (z)(IA -1 Ma

4 ~~Tn Multiplying both sides of this equation by zI()
*Tr [W(n~k)e(n~k)eT(n~k) (i.5b) And rearranging Lts have

from which (1.7a) 4nd (1.1b) foLlow. The block within
4. where WO() and P(-) are positive semidefinite time the dashed line in Figure I can be thought of as a

vArying weights and e(n+k) - Yp(n+k)-yr(tr**k). In most dynamic controller of the claasscal type. The loop
4AC applications R(-) is rot to be zero. transfer function at the plant input (point 1) Is given

by
Given (i-(v, MAC finds an optimal control.

* ~~sequence lu*(n+i-1), i..T by minimizing J over L(z) - (r)(t-¶)I~
the admissible input .eqenc u*i) )il .Tn".
Once the optimal control sequence is computed. the
first element of the sequence is applied to the actual. and determines the robustness of the feedback con-
plaat and the process repeats all over again. figuration at this point. When we have perfect Iden-

tification, i.e. 11(z) - fl(a). then at point 2
*In gjeneral. there are no analytic solutions for

the control sequence lu (01 - it is computed at each O ~) (-,Ez
step ussing an algorithm known as IDCOII. Therefore in -'()*~-(- 0 ~:
its most general form, 4AC cannot be put into a
* lasitcAl -~ontrol framework. However under the
f')II WI vtig simplIfying Assumptions MAC can be modelled ,tr-(a
as A oritt feedbsck configuration:

or z0(z) m z)1 )C )(.)
(1) The 4ctual plant 14(z is minimum phase-.

*(it) Th plant aoAel A(z) is mintmum phase; EquAation (1.9) Is C44civalent to
S.. 111) There are noa Input caftstratntA. i,*. 1(i)-fttm

far all 1: ,a(neI) ;(~(-~). (n) -Y~N)
nwv) Tn-I. i.e. the optimization is tearrted over

one !uze'*r step ahea,$. U-ider this cndittion which shows that ýa(n) is thre reference trajectory
IVAC ts a lane-ttep ahead pvedltctive sequence yr(n) As shown in eqatiocln (1.1a). This aian

* oakruiior. Zhat whOA the plant model is known exactly. the .Contyal
sequence lile) tos generotQd as

tn addition, if ve asiumo that the plant model R(t)
is OILactl~y knavn. i.e. (~4:. the MtAC to elkilvalent V(0) 0 Hi Wz)z - H W (a)yz
to An inverse mettroklaiw. Rovever. under the

IamplifYing auptos (t)-I(W, it It sufficelet to ThereoreT the output of the actual Plangtoi
%clect u4(n) tQ Satisfy

Y*fel Tfz) al Vli0.6) VWt-WR - '( rz ki~

* vtic--h *hove that In steody state the plant oqtput r(n)
for atentsuA ef the t:*it fuincv in .1. The 4*sueptions Is Identical to the tr~ofereca t-4)iertary Vritm) - pvr-
W(i)~lI) enlsuro the exi~stence of 4nopt leua control fact trakckIn1 he* be" achievad. ftquettln 0l.1-31

v*1that attisfies 01SA) - the resUltI&4 optimal cast clearly shovs the twecd for H1(a) t,3 be sxtlntus phase.
I* is ttr* in this 4Case. 41owtVeer U*(2) to themt iarjt- This6 analysis ha* revealed another Untertstint -,"opetyf
041Y~ ervnerate b TP '(p(I)rtcl so that ef AC. Xasat traeotifti e-vm4 as volti %o 4ehleved kv

-~~ ~I1~~d thv Plant tu eanerata the 949t*vt 4,
l(NF ,)11 z~j l-iiC~t a:IIa pen-~nuj cofiguration. h,~t IL VAC It 4ota o **Z3ins

Yt) Mz)( )~a)(1~~I(z I-¾C~) 1d) enft.of a !*4dback cofgu14oCuc a 4Ia2-
SOACe rqelertlon. *qensltl'itf Oleon *~ are! aim.'

* tqattna i.Ta an ~I'b1relAto thq epitcz -1bt4IftQ VhIle iotieu achtvw~nA qfatsý
w~hthe o"ttext Input V*n ?1a) 4fnd oumtput tr$acking.

vequvite V &(Ia. It Is qasy %-. 'see 014" thitstaiplift".
f.'ir% oi vAC it qqt,!v3ient to -he 1*11wiftc 440 uznlt
fee,' *rk r--oaflgttratloa (v- have drapped he#ncaforth the anaviwrC ti tg

ellCi) Cti) 1 1  USE) Ula) YU-) "
¶ C1 ~ *-A H~it() ;441 '.c 1:ia ,V~

a.' ranag. 1 ~,ingth. ,I.*,- tpI-Cn is 46 1r

* -. -. oes *~~f a~r~ r Ik 'p "-C a C - ai.ii ttts

* ______ . ~ ~ ~ ~n-l leturln 4ilIrcnq 't.,aat'b



I.Pt vo~ sn4 I *fle the~ loop t ranife r f~ani:t Lb) 1-2( z )It h.v4 fi I-t 1Yoniml ~i .P 'it-) rhe,i 'Itk, h&4i'i tl'w ar Ithe. 'Ie'Ariit 'it the' 1) lilt I .-. 1? polint 61 ll.(z I .In marg in of it lh on thAt 'iiinoe' 1. Am .1 nil t ' r ,I
* given by fact h db 'ipwar-i gain margin Is 4 giiArfinteed *mt,? f'ir

'each channel. Rowever on the other hand by sl'-ewing

L Z) Hz-_()(-, (2.0) down the reference trajectory, ioe. by *&king
L2~z)-~ H~)R (z(I-~)the eipward gain 'mar4in at each channel can tw Increas~ed

to Infinity - which is an unusual result for a.% evitput
Ileret RW: is the model of the actual Plant. In a nomi- feedback control scheme.
nal des~qn, the actual Plant W1z) is assumed to be
equal to the model NOz, i.e. 11(z - AWs. Hlowever the Using the above analysis, the toierence of ch.. ~a
return difference function 112() is then nominal loop to any perturbation K (not necessarily

diagonal) can be obtained. if the perturbation is

-l ~ dynamic. the analysis is slightly coaplicated As shownI
H W: l'L (z) -- (z-1)1+H(z)fl(z)(1-A.)I
2 2 Z-I 0(2.2) in the following.

The closed loop poles are given by the zeros of W.e select the internal model R(s) and thereir)rc
det(H 2(2)). For the nominal loop. i.e. 11(z)..R2(z). the A(z) is Completely known to us. On the otherh~and the
closed loop poles are given by the zeros of plant R(z is not known to us exactly. It is eiuctom.try

to think that the actual plant H1(z) lies In a neigh-
dec(z-A 0 )-0 (2.3) borhood of 9W~s. If we define this neighborhood by an

referenceddtiv trajectoryo tHamc aW given byaheolefies
w ¶hich shows that the plant dynamics are cancelled and ad i i earu b t o .H ( ) t a a i f e
the overall behavior of tne loop is governed by the ;011l (e ))a .) O 5, (2.d

-*'z**2~ In this cast each of the p-outputs Is iden- then we assume titat WI- lies among the classI
ti- aI to the corresponding reference trajectory y(n). a

This property of flAC is Also ribtained it we com- where _'H a(z) Is given by (2.8). H1ere 3 (V, 'lenotei the .'.
putE the o3verall transfer function T2(z) from the mtaximumt singul'ar Vali.* of X and af.) Is a fre.que'1cy
refere-nce trajectory .et point (:(Z) to the .1utput V(Z), dependent liuntton,n t..ie is ususally ktnnwn t-i 4 fe-4ttn..r

I Ye Vi) - T' (z)C(:. Sineit I,(z) w i~/zl e from his opriori. expertiencit with the 4yitem. Fo.r 'o
hilve venience af the analysis ye assume that Aala(1) J*44

T (Z) - , (WI+L(01 (2. s) uppose the actual plant Rs Ilies othe boundary o
2 the ClAss of systems giteti It (2.9). i.e.

S Since *1 is diagonal, Tz.(t) is also diagonal. This
iihoshg that the overall tranlsfer function is non- H(s) - R~z)i',I4 Ws .. ~
interacting: any change in the reference trajectory
parameter in the i-th Input Channel affects the output The perturbed loop t., (a) Is theft
In i-th channel anly; the other output channels are not
affected at all. This decoupling property of IfAC has A i

h'. . made it very popular in Indtistries where the practicing 2p TT
* engineer always prefers a decoupling control strategy. __~*i ~a() i%

This chalracteristic of MtAC as an outputi feedback
*, conitroller is outstabding.

* Te closed lo~op Pat*$ of the porturtmed 1000 1s 4itVqn by
it Is trihfrar xi ceis;ute ~he 11ain aeritin the ceros of

* from !Z.10 if VCe rcall that It i6 the tIcireeICV Of
Mhe ýftnol nelp t': a Ittpis v etrain it deisiv ~ t~'

E kli e.4o M itthgli ftegin- ist qveni It the rangeo of 4
v-st4raR 4f 4 -Aluornal ivatri' K0sith'I . awth that the anWd U0 Vent tft IfA 00O suye C1nJition ont A) *u.eh thlt

pel of" J*" ro"Ifto Vbihe. 'Gfe. the Perturb*4 %n~ap the :*raa In (2.12) lie vit~ht Rtte ,*nt ee rrcý'a* 1.
L . t to) is rlto by The n.'. tn-4p iteefetfr fgnction L.&iIt 404 tdf..e-.

- vit~' ~ ~Adffer::ate -jnctlae. %W~z 4r- -bgssI..I fro ''.)

Tho ciaised loop poles arte stoes byN

If 0, to Sliacnal aftd it a~ i re the roots of eMuotion Ckearilp the rtbe optransfer f'vnctio
(2.1). thtet the cos"d 1001) 00les 'T art gISIeft by L2'2 can b cotidered as a "pony batlo 190 !'.fit) *1

~ 1~- ors~~ ~~!:~%ft ~ loo"! loop trfelffunttloft Wt~) tithire

ClrTtepertarhed4 INQ too istahlqb If for a:1 It,. aa

I 15 vget Im% r'i.[) *hen Vewigese to

T 7%?.I1. a 'altacoteqllt 4i.."C it 4,
* fooilbmali <onttlq~lle 4f_ %' a I .t.'a' 'A2, lit A I .'? SC, &
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,,.)..rhen a 4,jffh-.L~nt :ondition rhait with -/(t) a measurement noise .ind w(t) i pr'ac,!g 'aol a.'
detU I+L2p(z)) in (2.15) has alq;o p number of zeros in with respective ctuss spectral iensity matrtcies R and
jzl<l.O) is (Sain (1981)) 0. From the theory of 4arkov processes and in par-

ticular the theory of stochastic realization, the mini-
-(A 2 e)4(L2( (2.16) sal state vector defines the information from the past

,(AL 2 e --2relevant to the future of the process and Is called the
whece j(X) denotes the imallest singular value of X. predictor space (Akaike, 1974a).

,j If AL2TZ) satisfies (2-.16), the perturbed loop is
stable. E~quation (2.16) can further be simplified as The approach of canonical variables for system
folio-.a. First note that V(mX)40(my) implies identification is to determine the optimal set of
M ()WaY). Then using (2.14), and (2.13) in (2.16), linear combinations m(t) of the past p~t ) that ,esit
we have, predict the future f(t) in terms of minimizing the pre-

K 41jdiction error

a (H 2.)) Elf - t112 - E((f - E)T rff (f - f)j 13.5'
which is implied by

jW J j~jwhere Eff is the covariance matrix of the future f and
3fAH a 0 W)1,100

4 ~) Jf-,,' t-,.,) (2.18) is the best prediction of f based up~on the memory
m(t). This optimization problem involves the optimal

Let *,,l, - min -it where eich %Is1 stioh that 0..'irl. iiehoction of the dimension of m(t) an well fig the' opti-
Then sal selection of the Itnear coambtnntionq of the j. pst

* 't-i1-lrn ~(2.19) The problem of minimizing (4.5) is precisely a
generalization of the classical canonical correlation

Equation (2.18) is satisfiedi if unalysis problem of mathematical statistics (Hotelling,
4 1976). 4~ode -i computational procedures use a genera-

*-'[(e 3 ~ ~lized singular value .iecomposit~i~n (SVD) (;olub, 1969)
- ~ ~ i-~T(2.19) involving the covariance tr-.tricies of the past and

future. The ger.eralized SVD determines cransformations
N J atkd L and a d'.agonol matrix D such that

The RRS of (2.19) Is pre~orap-itablii. if the Identifited
model A3(z) iatL~ftes (2.19). then the MIAC control law J p L - Diag(yl)...)Yh,0,...) - D (3.6)
is 4tabltŽ for all planti under the class giveit by
(2.8). 11oilever, we are still looking at the physical j E I - I ; L Ef L , 1(.)
interfrertation of tht cooaditior. given in (2.01). For
SISC systems, the aiingular vaiue is replaced bylthe The transformations can be interpreted as defining av .agntitue funcztion, new set of coordinates for the past and future in which

thc co-.ariances are D. I, and t resnectively as given
Simitlar relAtions can be drived for multiplica- in the last equations (3.6) and (3.7). For a full

tive perturbation% and for modelling uncertainties At crdar state model, the optimal raaMOZY Or Stato- X(t) is
the plant input, related to the past p(t) in terms of the first h cano-

nical waritales as ml~t) - (I,O)Jp(t), i.I,. the first h
toomponweats of the canonicnal predictor variables .sp~t).

1. SYitth I')K,4TIVICATIOI4 USING .CAIONICAI._VARIABLEFS A minimal order realizati,)n !s obtained with thii

ehqice rif ttate. The campi,itat ion of the state iapace
Proposed w~thoda for muit i'ariable parameter Wden- matricies is given in L~artmore (1983b).

* tificatlon are plaigied with problems of computational
romplowlty ar-d %inevitability. For iterative optimiza- In system identification. the covariance matricies
tia,, tPpr,)ArhV.& %uch as RmAatium lIt~elthood. there is no are not known huat are estimated from the observations.
aprt'irl evaund oan t'.e nuohr -if terattor'e r.'ejo.rsd for Thi' .tAtstiticak leti-ristrnatiore of rank in the aoia
rinvrgence tinteas a itood Initial estimate is variate analysis is criven approximately "sIng standard
a.vt14ble. The CO %4a~ttOq tnV-1lIteci in mA'ay ichemes coknonical correlation nanlvsis methods (Akaike, 1976).
bvcofte Illconciittoned if the parameter tdenttfi~biltty A more refined comparison between the different order

*is tileicnditioned which accurs frequently in practice, models io given by use of the Akaike information cri-
'rhoe .. n,ýnnal variate. **rho,! involves oolution of an tenion (AlIC) which Ii asymptotically optimal In teini-

a otobtrale probloes tnvtulviog 71`13rill A 'JIr.9.Uir ValUd miting entropy (Shibiiti, N9811. The, -is* of entropy
drceapeol t toes v~,ch io rwomriealty acfcurate 4ad stable measures such as the AEC has a iundamental justificea-
tqt anyv #et of ~ea The eystem is Idetitifed in an tiok irk tern of the basic statistical principle~s of
tmplicit elaite !pceoft which avoid* the Wonm- itufficiency and repeated sampling (Lartiesore, 1983a).

Nilbilty robem.The -tunittal *,der realiratioti ran i* derersinod

*Tht approach to syetee Id(-ntI.*Izn~t1n uting froms the czinontical correlation analysis with k-h.
;1tnetalized canonical venlablee is descritiva in acome However with k<h when a roduced memory is selected, the
4dztal 1% L.Arlmott il9eUb). That approach Involve, approiactat system does .iot In genweral minimsize the
eotioeidtratlom of the piast p(t) a-id fustivo fit) of a predictlon error for that order. This is becsiiie the
vvrt~r proesso at % tiae t del lrc4 is reducs rank canonical variables are not in general

retciraiie19i c,,fputAb41*. tiowevitr In the cash of theŽ
P ~)- tyT(t), TJ(t. vT~i)- u1). I s. 11 tatistiral rank dotermination prnblevi, there i% an

ioli'nlfirsnx .iifierenre hatwoon the 4titio -if too
f ct -(Tct~j%. YT (t-1~. .. 31.) realirod *yste* corresponeaing to the statistitcatly

opti*,us choice of nrder endf the full rank rannfeical
~1.wh.'r- ,i~t) it he. 1inp..t And 'it) 1i the oustput 'if an Vitariabls.

qv*1'e -v wit~ uh *eri(. ei-aeo truet,,r# 4f the fbrs
Tb. unatrumenta! vftriable's OF1" "101 4e a *W,,rIt

6(t#1) - *stý a -J # .41U ().0) iettrpritatuon In temst iof the g#nern11x#4 eno~nte~i
vattato orlble-. In the instr-umentail rili

-It' - Pxfstl Ault) * 5WOt vtt) (1.41 approach. the state equations 0-3.b ire erititJeveoi as



unobserved structural relationships that are indirectly I
observed through the noisy measurement equations (3.4). N(SS) - E - clog S( )S-(I) .1)

* ~~A vector m~t) of instrumental variables is constructed2 i
which'is hopefully close to the true state x(t). This
is used in place of the true state in solving the + trtt - S(w)S 1 (1)11 _
problem. This apparently works well for an appropriate 2s

choici 6f the instrumental variables.
a ~dw•i : •E fl tr(S'1(,,)[S('w) - S( -)} 2

A-vore general problem is the optimal choice of 4 -yr

Sinstrumental variables as posed by Rao(1965, 1979). where expectation is taken with respect to the para-
This is formulated as finding the optimal choice of k meter estimates, and the approximation holds to second
linear combinations of the past p(t) that predict the order in the elements of S-S. The last expression is a
future f(t) as measured in terms of the squared error generalization of the integrated squared relative error
(f - t)T(f - t). This is precisely the generalized in estimating tile power spectrum S, and there Is an
canonical variate problem (Larimore, 1983b) with interpretation in the multivariable case in terms of
weighting matrix 0 - I. If k is chosen as full rank, the principle components of the power cross-spectral
then the memory and the state qpace realization are matrix (Larimore,1984).
Independent Of the weighting matrix ()-I replacing rlff

in (3.5) and (3.7) (Larimore, 1983b). However, for In the case of ML estimation of the parameterq ),
lower rank k<h, there can he a considerable difference the estimates are asymptotically consistent and effi-
between the state space and reduced order system for cient achieving the Cramer-Rao lower bound E(O-4)(-W-)T

different weightings 0 (Larimore, 1983b). The squared PF-I. Using this lower bound, the lower bound on the
error relates to energy while the canonical correlation entropy measure of spectral accuracy is derived as
analysis relates to the statistical significance of the EIR(S,ý)j 4 k/2N. This implies the `ower bounJ
)roo lem. 1he canonical correlation analysis can be (Larimore, 1982, 1984)
viewed as in optimal cboice of the instrumental S d 2k
variables using the appropriate weigiting (.5) of the E I Lr(S-(w)[S(u) - S(w)]} 2 4- 2k (4.2)

* prediction errors fo: the determination of the sta- -i2

S tistically significant number of states, on the expected integral of the relative square error.
This is a fundamental bound on the achievable accuracy

Time recursive methods using instrumental in spectral estimation.
viriableq and approximate maximum likeliD-od (IV-AMf,)
are claimed to be approximately efficient parameter To demonstrate the efficiency of the canonical

A identification methods for large samples as shown in variate method of system identification relative to
simulation examples (Young, 1979). This is shown by MLE, the spectrel ac-uracy of the method was campared
Monti Carlo simulation and by estimating the parameter with the lower bound (4.2). The autoregressive moving
by Monte Carlo simulation that the canonical correla- average (ARMA) process
tion method also gives efficient identification of the
system dynamics. This is done by evaluating the y(t) - 1.3136 y(t-1) - 1.4401 y(L-2) + 1.0919 ykt-3)
spectral estimation error.

- 0.83527 y(t-4) .- w(t) + O.j7921 w(t-l)

.4. EFFICIENCY OF CANONICAL CORRELATION ANALYSIS i 0.82020 w(t-2) + 0.26764 w(t-3) (4.3)

4" The asymptotc efficiency of system identification of order (4,3) respectively for the AR and MA parts

%,: using canonical cotrelation analyais is dxscussed in with the noise variance of w as Q - 1.72581E-2 was used
this section. An entropy measure of the error between to nimulate samples of size N-800. This process was
t-e true and identified system is used to meaeure the analyzed by Gersch and Sharp (1973) and Akaike (1974b)
error in estimating the spectrum. to show the increased accuracy of ARMA models over AR

models. The canonical variate analysis was done on
To directly describe errors in the identified sample covarlance matricies involving 16 lags of the

system, a recently developed entropy measure of the past and future.
' system identification errors involving the powor

spectrum is used. The entropy measure is a fundamental Figure 2(a) shows the power spectrum of the true
meanure of the errnr in approximating a .ystem using a and estimated models for 6 Monte Carlo trials of N-800
model selection procedure that may include the choice samples each. The estimated spectrum appears to be
of model order such " state space dimension. In a close to the true spectrum with a small bias at the
predictive inference aetting, the entropy =malure peaks and troughs. Figure 2(b) gives the squared rela-
follows naturally from the fundamental statistical tive error of the variability, excluding the bias, in
principles of sufficiency and repeated sampling estimating the power spectrum at each frequency along
(Larimore,1983a). with the lower bound for the expected squared relative

Ceoierror. The average of the errors over the 6 Monte
Consider & vector stationary Gaussian process Carlo trials is very close to the lower bound

... ,y(-l),y(0),y(t),..., with power cross-spectral den- demonstrating the relative efficiency of the canonical
sity matrix S(M). and suppose that some parameter esti- variate method.
matton or model fttting ichems to used to choose a
model S(w) based upon a sample of N time observations. In Lartmors et at (1983), the identification of .i

The negative entropy per unit time, or negentropy for very lightly damped plant under closed-loop control
basvity, for measuring the error between the true using MAC is simulated in Monte Carlo trials, The ade-
spectrum S(w) and the model selection procedure which quacy of the identified model is demonstrated by comr-
estimates the spectrum S(w) can be expressed as paring the fitted impulse response and transfer

function with the known plant dynamics.
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SMULTANEOUS COMMIENCE BANDS FOR EFFCIENT

PARAMETRIC MULTIVARIATE SP"rRAL ESTIMATION

By WALLACE E. LARIMORE

" * Scienific Systems, Inc., Cambridge, Manachuens, USA.

SUMMARY

Simultaneous confidence bands are derived for efficient parametric multivari-

ate spectral estimation methods. Spectral estimation is consdered for time series or

random fields with a multidimensional 'time', and the presence of an exogenous
* input is included. 'he usual vector m-sult for simultaneous confidence intervals in

the Scheffe method is generalized to the case of a ccmplex Hermitian matrix which

is required in the multivariate spectral estimation problem. The main result is the4
derivation of simultaneous confidence bands for the matrix elements of arbitrary

matrix functions such as transfer, poer spectral, correlation, and iwpulse respxioca

functions For spectral quantities, the computation is done entirely in the frequency

domnain. The results are applied to confidence bands on the relative squarcd error

in spectral estimation.

Sew key words: Achievable accuracy, Sunultaneous confidence bNads, Spectral

Sestimation error.
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1. SPECMAL ESIIMATION PROBLEM

The problem of determining the statistical accuracy in identifying a model for

a stationary multiple time series is considered in this paper. The cases of the pres-

ence or absence of an exogenous input or additive measurement noise are included.

Consider the general case where the vector x(t) is the exogenous input and the

vector y(t) is the observed endogenous output of a system which may include other

unknown excitations and measurement noise. Thus consider the jointly stationary

gaussian vector time series x(t) and y(t), t = ... ,-I10,1,..., with power cross-spectral
,4,

matrices S. (c,.), Sj (w,.). Sy(wO) parameterized by 0, and denote the power

crow-spectral matrix of the joint vector (XTr ),yT )9 as s (w,).

Statistical inference is considered on a class of linear Gaussian processes

parameterized by 0. Specifying a parametric model for the conditional pro=ess y (t),

I a s, given x(t), t < s, implies a causal linear model of the form
* .. ,

* )1 (t') + =, ) + ,0)

0i
where hlt,-0) is a causal linear system giving the response rQl) in yQ) due to the

past exogenous input x(t) and where q(t) is the error in predicting y(s) by rQ).

From linear prediction theory, the trawet iunctioo of h(:;,O) is

H(w.6) = S,(w,•,5J(w,0), and the errmo q() in pr.ýcuag y (t) is upm..ela-ted

with r (i) with power spectrum S,,(w-,e) =Sxy (tae) - H (ca.e)Su( (w,O) ce). Note

that any clan of parameterized models S(t,,) can be equivalently specified by the

4%4 parameterized models (S, (w,0),(w,0)) which will prove more convenient.

It is convenient to workt w entirely 'in frequency in and specfy the po-

bability distribution and likelihood functions in terms of the power cro-spectral

i '
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densty matrices and Fourier coefficients. For simplicity the time series case with t

a scalar is developed below, however the results generalize easily to the random

field case of a vector t. Then asymptotically the log likelihood function is given

following Whittle (1953) and Larimore (1977) with Q Y (w) - R (w) and using

the relationship AQ,',)X *(w) = 0 by
N ; ;_..

logP(XO) -Vlo2' - 2f [10g1 SI(a)I + dwO

and the elements of the gradient vector alogplaO and Fisher information matrix

F ( are

as N )()Q

2[ Afur[{Is~(8H (w)}S d ta

AC PilM -a

',-.Lot -yrbe• ba vari"l such as fre~quaticy or time, and cosie a p 4imewm~oal

- €ompte vector f (-j,6) with copoets that are functions of "y and 0 having con-
S •tinuous second derivatives with respect to the parmeter e. For easing, the eel-

meatis of the vector function f (-1.0) could be the elemenits ot the spectral matrix $.
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the squared magnitude coherences, the impulse response function of a spectral fac-

tor, or the covariance functions of the proces. Asymptotically

f (yO) - f ('y,) = f .G('YA - 0) (2)

where f ,(y. 6) denotes the matrix of partials Of (y,6Yo00  evaluated at e = 6. is

expansion and the Scheffe' method (Scheffe', 1953, 1959, p.68-70) of simultaneous

confidence intervals as applied in Newton & Pagano (1984) lead to simultaneous

confidence bands in the univariate case. For multivariate processes, it is of consid-

erable interest to extend these results to simultaneous confidence bands on vector

and matrix functions of the parameters, e.g. the spectral matrix. The extension that

we will consider is the quadratic form

{f (1,40) - f (y,0))*P (Y)(f (•,f)- f (Y,0))

whicb will be bounded as a function of -y. In the multivariate case, there is a

:toice to be made for P. For reasons of invariance and to obtain an equally tight
ofidence bund -n any linear combination of (-y.6) -f (-y,O), P is naturally

chosen 4s the inverse of the covariance of (2). ..

In twe sequel, a general P is used and then specialized to this natural choice.

The basic mathematical result needed for such an extenson is given in the Appen."

dlx and is used to prove the following theorem on simulUaeous confidence inter- .0.

vals.

Theorem 1. Consider a parametri; family of stationary Gaussaa vector

process with power cross-spctral density matrices S(1y,) for 0(4 satisfying regu-

larity conditions (Whittle, 1953), and for which the parameters are locally identifi-

able so that the Fisher information matrix F(O) as given by (1) is full rank. Let
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y(1), y(2),...,y(N) be a sample realization and 0 be an asymptotically normal and

efficient estimator of 0. Let P(f,0) be a Hermitian matrix. Then as N - , the

probability is at least 1 - a that simultaneously for all g-F( the true p-vector func- N

.f ('.y, - f (,.O)}'P (-y.§ (f.o) - f (-.)0))

!S I az irf8-vi- () -,6P(Ii

where q is the dimension of the vector 0 and where X 2 is the upper a critical

" jpoint of the chi-squared distribution on q degrees of freedom.

Proof: As shown by Rothenberg (1971), the parameters are locally identifiable

if and only if the Fisher information is full rank. Let f ('y) and/ (-I) denote f (y1,0)

* ~~evaluated at 0 and 6 respectively. T'he vector random variable N ki()-i())is
. asymptotically distributed as the normal random vector N W %(,j,6) - 0). Asymp-

totically (0 )[0 6~0) is a X.2, random variable, where F (0) is proportional to

sample sze Nas in(1). So the probability is I- utthat thetrue 8satisfies

(- M 6) ( :s0 1 where M = F (6)fX "From the Apndix, this inequality is

Ssatisfied itazdonly ifI f(t - I S trHhM-C" for al, p inimalmatrices

i. If. Sine the set (H -P9,t ,(p,6 )for - 1E) is posbly a pr sutbsct of all

p xq -dimcnsional matrices H. it follows that asymptotically with proability at least

1 - athem cquality

"IN (f-I) - I (-Y))• P (,Y.iw (1) - I (Y))
44•-

• N {f , - ) P ('v.6  ,(A - 0)_
4'X

:S NX,04, ir f *(y,0i) F (i) f (-1.6)P (-1) (3)
i4 -

?oI
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is satisfied simultaneously for all -16.

For the natural choice of? P -F-l(i) f;(,t wing t to denote the

pseudoinverse of the covuiance of (2), the inequality (3) beconmes

("y)f- f (v)}'(I ,(v,6) F-(O)f;I() () - I Cv)} < rX •

where r =Rank (P).

ThIe relative squared spectral error ,r (%(w)(S(w) - S ())3 2 is a fundamental

quantity in measuring the accuracy of a spectral estimation procedure. The integral

of this quantity is asymptotically the Kullback-Leibler information of negative

entropy (Larimore, 1983) which is & fundamental statistical measure of model

Io ]error. The expected value of the integral is poportional to the

number of estimated parameters divided by the sample size (Larimore, 1982)ý From

Theorem 1, simultaneous confidence bands on the simple relative squared spectral

error are given by the following thborem. i

Thcorem 2. Under the conditions of Theorem 1, as N -- a, the pobability is

at least 1 - a that simultaneously for all wfl the sample squared relative spectral

error is boundcd as

rtis"-(Wx(W) - S (WO

S x! tr &VS - (W~O)

where ({x(e)} G



Proof: Asymptatically I(w) and S(w) are equal s that we may conider its

inverse in (4) a constant denoted S(w). To apply Theorem 1, we conider the Her-

mitian matrix A (w) = k(-.fS (w) - S(w))S-(w) and exress the squared relative

error symme•tically as 'I
sr AA o'rMA 41a i f (W)f (W)(5

Ij

where f W() vecA(w) is a vector containing the elements of the matrix A(w).

Application of Theorem I to the vector function f (a) and rearrangement as in (5)

proves the inequality. Emx ding S(w,,) as in (5), the equality follows from

E w [SACO()W) - S(WO))

= S • s-N8) E 0 - exi - of S-( •W) ar )

iiF aiui of°.

In principle any quadratic form in the components of the spectral matrix could

be used as in )teorem I by introducin a weighting matfix P(wO) Fo confidence

inteivals on the spectral matix. the weaglting ot the inverc cavariance of the

erro in csgimatint the spectral matrix gives tightest confidence bands which can be

* exprened as

VW(()-SWK ))I~C{S(ha)-S(QiI' ;X 2

For a given confidence level a. this ivcs a simultneous confidence band for all

J'



frequencies Qal as a quadratic form in the elements of &(to)- S (w) ).
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APPENDIX: AN ELLIPSOIDAL INEQUALITY LEMMA

Lemma 1. Let 4o be a real q-dimensional vector and for a particular p let R

be the class of p xq-dimensional complex matrices H, and let M We a symmetric

positive definite matrix. Then 4o satisfies OTM4 js I if and only if for every H (N

the following inequality holds

II i.+4j112 • ur J1M"1

Proof: Any Hermitian matrix A bab an eigenvalue-envector expano

A

From the Schwartz inequality, s•x) -• (iAXz'x) for any 4 &ad x with equality

if and only if cx for c a scalar. Let 8 be sucb that 88'• U-t . Settiag e-

-16 and denoting the quantity in bacs. by A, we have for evr• Hl ,

and every

II H•II Z It HD++II "+=o{no'+}++
ftt

4* Aa XO(- = "ll



S km (xm xm) = 4*M0 trA = eM0 trHM-ACt

From this the "only ifr part of the lemma follows, and choosing

H = B*- 1(,,O... ,0) gives A = 44 and strict equality which implies the "if* part

of the lemma.
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